Suppr超能文献

利用机器学习和云高性能计算加速计算材料发现:从大规模筛选到实验验证

Accelerating Computational Materials Discovery with Machine Learning and Cloud High-Performance Computing: from Large-Scale Screening to Experimental Validation.

作者信息

Chen Chi, Nguyen Dan Thien, Lee Shannon J, Baker Nathan A, Karakoti Ajay S, Lauw Linda, Owen Craig, Mueller Karl T, Bilodeau Brian A, Murugesan Vijayakumar, Troyer Matthias

机构信息

Azure Quantum, Microsoft, One Microsoft Way, Redmond, Washington 98052, United States.

Pacific Northwest National Laboratory, Physical and Computational Sciences Directorate, 902 Battelle Blvd., Richland, Washington 99352, United States.

出版信息

J Am Chem Soc. 2024 Jul 24;146(29):20009-20018. doi: 10.1021/jacs.4c03849. Epub 2024 Jul 9.

Abstract

High-throughput computational materials discovery has promised significant acceleration of the design and discovery of new materials for many years. Despite a surge in interest and activity, the constraints imposed by large-scale computational resources present a significant bottleneck. Furthermore, examples of very large-scale computational discovery carried out through experimental validation remain scarce, especially for materials with product applicability. Here, we demonstrate how this vision became reality by combining state-of-the-art machine learning (ML) models and traditional physics-based models on cloud high-performance computing (HPC) resources to quickly navigate through more than 32 million candidates and predict around half a million potentially stable materials. By focusing on solid-state electrolytes for battery applications, our discovery pipeline further identified 18 promising candidates with new compositions and rediscovered a decade's worth of collective knowledge in the field as a byproduct. We then synthesized and experimentally characterized the structures and conductivities of our top candidates, the NaLiYCl (0≤ 3) series, demonstrating the potential of these compounds to serve as solid electrolytes. Additional candidate materials that are currently under experimental investigation could offer more examples of the computational discovery of new phases of Li- and Na-conducting solid electrolytes. The showcased screening of millions of materials candidates highlights the transformative potential of advanced ML and HPC methodologies, propelling materials discovery into a new era of efficiency and innovation.

摘要

多年来,高通量计算材料发现一直有望显著加速新材料的设计和发现。尽管人们对此的兴趣和活动激增,但大规模计算资源带来的限制构成了一个重大瓶颈。此外,通过实验验证进行的超大规模计算发现的例子仍然很少,特别是对于具有产品适用性的材料。在这里,我们展示了如何通过在云高性能计算(HPC)资源上结合最先进的机器学习(ML)模型和传统的基于物理的模型,使这一愿景成为现实,从而快速筛选超过3200万个候选材料,并预测约50万个潜在稳定的材料。通过专注于用于电池应用的固态电解质,我们的发现流程进一步确定了18种具有新成分的有前景的候选材料,并作为副产品重新发现了该领域十年的集体知识。然后,我们合成并通过实验表征了我们的顶级候选材料NaLiYCl(0≤ ≤3)系列的结构和电导率,证明了这些化合物作为固态电解质的潜力。目前正在进行实验研究的其他候选材料可能会提供更多锂和钠传导固态电解质新相的计算发现实例。展示的对数百万种候选材料的筛选突出了先进的机器学习和高性能计算方法的变革潜力,将材料发现推进到一个效率和创新的新时代。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验