Zhang Yangbo, Guan Hao, Sheng Tingfeng, Chen Ruiwen, Rogge Sven, Du Jiangfeng, Yin Chunming
CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China.
CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China.
Nano Lett. 2024 Jul 24;24(29):8859-8865. doi: 10.1021/acs.nanolett.4c01424. Epub 2024 Jul 9.
Cryogenic temperatures are crucial for the operation of semiconductor quantum electronic devices, yet the heating effects induced by microwave or laser signals used for quantum state manipulation can lead to significant temperature variations at the nanoscale. Therefore, probing the temperature of individual devices in working conditions and understanding the thermodynamics are paramount for designing and operating large-scale quantum computing systems. In this study, we demonstrate high-sensitivity fast thermometry in a silicon nanotransistor at cryogenic temperatures using RF reflectometry. Through this method, we explore the thermodynamic processes of the nanotransistor during and after a laser pulse and determine the dominant heat dissipation channels in the few-kelvin temperature range. These insights are important to understand thermal budgets in quantum circuits, with our techniques being compatible with microwave and laser radiation, offering a versatile approach for studying other quantum electronic devices in working conditions.
低温对于半导体量子电子器件的运行至关重要,然而用于量子态操纵的微波或激光信号所引起的加热效应会导致纳米尺度上显著的温度变化。因此,在工作条件下探测单个器件的温度并理解其热力学对于设计和运行大规模量子计算系统至关重要。在本研究中,我们利用射频反射测量法在低温下的硅纳米晶体管中展示了高灵敏度快速测温技术。通过这种方法,我们探索了激光脉冲期间及之后纳米晶体管的热力学过程,并确定了几开尔文温度范围内的主要散热通道。这些见解对于理解量子电路中的热预算很重要,我们的技术与微波和激光辐射兼容,为研究处于工作条件下的其他量子电子器件提供了一种通用方法。