Bao Zenghui, Li Yan, Wang Zhiling, Wang Jiahui, Yang Jize, Xiong Haonan, Song Yipu, Wu Yukai, Zhang Hongyi, Duan Luming
Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, PR China.
Hefei National Laboratory, Hefei, PR China.
Nat Commun. 2024 Jul 16;15(1):5958. doi: 10.1038/s41467-024-50333-w.
For superconducting quantum processors, microwave signals are delivered to each qubit from room-temperature electronics to the cryogenic environment through coaxial cables. Limited by the heat load of cabling and the massive cost of electronics, such an architecture is not viable for millions of qubits required for fault-tolerant quantum computing. Monolithic integration of the control electronics and the qubits provides a promising solution, which, however, requires a coherent cryogenic microwave pulse generator that is compatible with superconducting quantum circuits. Here, we report such a signal source driven by digital-like signals, generating pulsed microwave emission with well-controlled phase, intensity, and frequency directly at millikelvin temperatures. We showcase high-fidelity readout of superconducting qubits with the microwave pulse generator. The device demonstrated here has a small footprint, negligible heat load, great flexibility to operate, and is fully compatible with today's superconducting quantum circuits, thus providing an enabling technology for large-scale superconducting quantum computers.
对于超导量子处理器,微波信号通过同轴电缆从室温电子设备传输到低温环境中的每个量子比特。受限于布线的热负载和电子设备的高昂成本,这种架构对于容错量子计算所需的数百万个量子比特来说是不可行的。控制电子设备和量子比特的单片集成提供了一个有前景的解决方案,然而,这需要一个与超导量子电路兼容的相干低温微波脉冲发生器。在此,我们报告了这样一种由类数字信号驱动的信号源,它能在毫开尔文温度下直接产生具有良好控制的相位、强度和频率的脉冲微波发射。我们展示了利用该微波脉冲发生器对超导量子比特进行高保真读出。这里展示的器件占地面积小、热负载可忽略不计、操作灵活性高,并且与当今的超导量子电路完全兼容,从而为大规模超导量子计算机提供了一项使能技术。