Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Prof Eykman Street No 38, Bandung, 40161, Indonesia.
Department of Public Health, Medical Faculty, Universitas Islam Bandung, Bandung, Indonesia.
Sci Rep. 2024 Jul 9;14(1):15790. doi: 10.1038/s41598-024-66509-9.
Global challenges in ovarian cancer underscore the need for cost-effective screening. This study aims to assess the role of pretreatment Neutrophil-to-Lymphocyte Ratio (NLR), Lymphocyte-to-Monocyte-Ratio (LMR), Platelet-to-Lymphocyte Ratio (PLR), and CA-125 in distinguishing benign and malignant ovarian tumors, while also constructing nomogram models for distinguish benign and malignant ovarian tumor using inflammatory biomarkers and CA-125. This is a retrospective study of 206 ovarian tumor patients. We conducted bivariate analysis to compare mean values of CA-125, LMR, NLR, and PLR with histopathology results. Multiple regression logistic analysis was then employed to establish predictive models for malignancy. NLR, PLR, and CA-125 exhibited statistically higher levels in malignant ovarian tumors compared to benign ones (5.56 ± 4.8 vs. 2.9 ± 2.58, 278.12 ± 165.2 vs. 180.64 ± 89.95, 537.2 ± 1621.47 vs. 110.08 ± 393.05, respectively), while lower LMR was associated with malignant tumors compared to benign (3.2 ± 1.6 vs. 4.24 ± 1.78, p = 0.0001). Multiple logistic regression analysis revealed that both PLR and CA125 emerged as independent risk factors for malignancy in ovarian tumors (P(z) 0.03 and 0.01, respectively). Utilizing the outcomes of multiple regression logistic analysis, a nomogram was constructed to enhance malignancy prediction in ovarian tumors. In conclusion, our study emphasizes the significance of NLR, PLR, CA-125, and LMR in diagnosing ovarian tumors. PLR and CA-125 emerged as independent risk factors for distinguishing between benign and malignant tumors. The nomogram model offers a practical way to enhance diagnostic precision.
全球范围内的卵巢癌挑战突显了进行经济有效的筛查的必要性。本研究旨在评估治疗前中性粒细胞与淋巴细胞比值(NLR)、淋巴细胞与单核细胞比值(LMR)、血小板与淋巴细胞比值(PLR)和 CA-125 在鉴别良性和恶性卵巢肿瘤中的作用,同时使用炎症生物标志物和 CA-125 构建鉴别良恶性卵巢肿瘤的列线图模型。这是一项对 206 例卵巢肿瘤患者的回顾性研究。我们进行了双变量分析,比较了 CA-125、LMR、NLR 和 PLR 的平均值与组织病理学结果。然后,采用多元回归逻辑分析建立恶性肿瘤的预测模型。与良性肿瘤相比,恶性卵巢肿瘤的 NLR、PLR 和 CA-125 水平明显更高(5.56±4.8 与 2.9±2.58、278.12±165.2 与 180.64±89.95、537.2±1621.47 与 110.08±393.05),而 LMR 较低与恶性肿瘤相关(3.2±1.6 与 4.24±1.78,p=0.0001)。多元逻辑回归分析显示,PLR 和 CA125 均为卵巢肿瘤恶性的独立危险因素(P(z)0.03 和 0.01)。利用多元回归逻辑分析的结果,构建了一个列线图来提高卵巢肿瘤的恶性预测。总之,本研究强调了 NLR、PLR、CA-125 和 LMR 在诊断卵巢肿瘤中的重要性。PLR 和 CA-125 是鉴别良性和恶性肿瘤的独立危险因素。列线图模型提供了一种提高诊断精度的实用方法。