Suppr超能文献

快速简便合成含脒基的可降解脂质用于体内多功能mRNA递送

Fast and facile synthesis of amidine-incorporated degradable lipids for versatile mRNA delivery in vivo.

作者信息

Han Xuexiang, Alameh Mohamad-Gabriel, Gong Ningqiang, Xue Lulu, Ghattas Majed, Bojja Goutham, Xu Junchao, Zhao Gan, Warzecha Claude C, Padilla Marshall S, El-Mayta Rakan, Dwivedi Garima, Xu Ying, Vaughan Andrew E, Wilson James M, Weissman Drew, Mitchell Michael J

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.

Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.

出版信息

Nat Chem. 2024 Oct;16(10):1687-1697. doi: 10.1038/s41557-024-01557-2. Epub 2024 Jul 9.

Abstract

Lipid nanoparticles (LNPs) are widely used for mRNA delivery, with cationic lipids greatly affecting biodistribution, cellular uptake, endosomal escape and transfection efficiency. However, the laborious synthesis of cationic lipids limits the discovery of efficacious candidates and slows down scale-up manufacturing. Here we develop a one-pot, tandem multi-component reaction based on the rationally designed amine-thiol-acrylate conjugation, which enables fast (1 h) and facile room-temperature synthesis of amidine-incorporated degradable (AID) lipids. Structure-activity relationship analysis of a combinatorial library of 100 chemically diverse AID-lipids leads to the identification of a tail-like amine-ring-alkyl aniline that generally affords efficacious lipids. Experimental and theoretical studies show that the embedded bulky benzene ring can enhance endosomal escape and mRNA delivery by enabling the lipid to adopt a more conical shape. The lead AID-lipid can not only mediate local delivery of mRNA vaccines and systemic delivery of mRNA therapeutics, but can also alter the tropism of liver-tropic LNPs to selectively deliver gene editors to the lung and mRNA vaccines to the spleen.

摘要

脂质纳米颗粒(LNPs)被广泛用于mRNA递送,阳离子脂质对生物分布、细胞摄取、内体逃逸和转染效率有很大影响。然而,阳离子脂质繁琐的合成过程限制了有效候选物的发现,并减缓了扩大规模生产的速度。在此,我们基于合理设计的胺-硫醇-丙烯酸酯共轭反应开发了一种一锅串联多组分反应,能够快速(1小时)且简便地在室温下合成含脒的可降解(AID)脂质。对100种化学性质不同的AID脂质组合文库进行构效关系分析,鉴定出一种尾状胺-环-烷基苯胺,它通常能提供有效的脂质。实验和理论研究表明,嵌入的大体积苯环可使脂质呈现更锥形的形状,从而增强内体逃逸和mRNA递送。先导AID脂质不仅可以介导mRNA疫苗的局部递送和mRNA治疗药物的全身递送,还可以改变肝靶向LNPs的趋向性,以选择性地将基因编辑器递送至肺部,并将mRNA疫苗递送至脾脏。

相似文献

1
Fast and facile synthesis of amidine-incorporated degradable lipids for versatile mRNA delivery in vivo.
Nat Chem. 2024 Oct;16(10):1687-1697. doi: 10.1038/s41557-024-01557-2. Epub 2024 Jul 9.
2
Tetrahydropyrimidine Ionizable Lipids for Efficient mRNA Delivery.
ACS Nano. 2024 Oct 22;18(42):29045-29058. doi: 10.1021/acsnano.4c10154. Epub 2024 Oct 11.
3
Paracyclophane-based ionizable lipids for efficient mRNA delivery in vivo.
J Control Release. 2024 Dec;376:395-401. doi: 10.1016/j.jconrel.2024.10.028. Epub 2024 Oct 20.
4
Cationic Lipid Pairs Enhance Liver-to-Lung Tropism of Lipid Nanoparticles for In Vivo mRNA Delivery.
ACS Appl Mater Interfaces. 2024 May 22;16(20):25698-25709. doi: 10.1021/acsami.4c02415. Epub 2024 May 8.
6
Acid-degradable lipid nanoparticles enhance the delivery of mRNA.
Nat Nanotechnol. 2024 Nov;19(11):1702-1711. doi: 10.1038/s41565-024-01765-4. Epub 2024 Aug 23.
8
Modulating Lipid Nanoparticles with Histidinamide-Conjugated Cholesterol for Improved Intracellular Delivery of mRNA.
Adv Healthc Mater. 2024 Jun;13(14):e2303857. doi: 10.1002/adhm.202303857. Epub 2024 Feb 21.
9
A Systematic Study of Unsaturation in Lipid Nanoparticles Leads to Improved mRNA Transfection In Vivo.
Angew Chem Int Ed Engl. 2021 Mar 8;60(11):5848-5853. doi: 10.1002/anie.202013927. Epub 2021 Feb 1.
10
Multiarm-Assisted Design of Dendron-like Degradable Ionizable Lipids Facilitates Systemic mRNA Delivery to the Spleen.
J Am Chem Soc. 2025 Jan 15;147(2):1542-1552. doi: 10.1021/jacs.4c10265. Epub 2025 Jan 1.

引用本文的文献

2
Advances in Functionalized Nanoparticles for Osteoporosis Treatment.
Int J Nanomedicine. 2025 Jun 20;20:7869-7891. doi: 10.2147/IJN.S519945. eCollection 2025.
3
Research progress on lipid nanoparticle messenger RNA delivery system.
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2025 Jun 4:1-10. doi: 10.3724/zdxbyxb-2024-0709.
4
Recent Advances in mRNA Delivery Systems for Cancer Therapy.
Adv Sci (Weinh). 2025 Aug;12(29):e17571. doi: 10.1002/advs.202417571. Epub 2025 May 20.
5
Lung-Specific mRNA Delivery by Ionizable Lipids with Defined Structure-Function Relationship and Unique Protein Corona Feature.
Adv Sci (Weinh). 2025 Apr;12(14):e2416525. doi: 10.1002/advs.202416525. Epub 2025 Feb 18.
6
Advances in the use of nanotechnology for treating gout.
Nanomedicine (Lond). 2025 Feb;20(4):355-369. doi: 10.1080/17435889.2025.2457315. Epub 2025 Jan 28.
7
Advances in RNA-Based Therapeutics: Challenges and Innovations in RNA Delivery Systems.
Curr Issues Mol Biol. 2024 Dec 31;47(1):22. doi: 10.3390/cimb47010022.
8
Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications.
Signal Transduct Target Ther. 2024 Nov 14;9(1):322. doi: 10.1038/s41392-024-02002-z.
9
Tetrahydropyrimidine Ionizable Lipids for Efficient mRNA Delivery.
ACS Nano. 2024 Oct 22;18(42):29045-29058. doi: 10.1021/acsnano.4c10154. Epub 2024 Oct 11.

本文引用的文献

1
Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer.
Nature. 2023 Jun;618(7963):144-150. doi: 10.1038/s41586-023-06063-y. Epub 2023 May 10.
2
Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis.
Nat Commun. 2023 Jan 17;14(1):75. doi: 10.1038/s41467-022-35637-z.
3
Nanomaterials-Mediated Co-Stimulation of Toll-Like Receptors and CD40 for Antitumor Immunity.
Adv Mater. 2022 Nov;34(47):e2207486. doi: 10.1002/adma.202207486. Epub 2022 Oct 17.
4
Subcutaneous delivery of FGF21 mRNA therapy reverses obesity, insulin resistance, and hepatic steatosis in diet-induced obese mice.
Mol Ther Nucleic Acids. 2022 Apr 18;28:500-513. doi: 10.1016/j.omtn.2022.04.010. eCollection 2022 Jun 14.
5
Emerging mRNA technologies: delivery strategies and biomedical applications.
Chem Soc Rev. 2022 May 23;51(10):3828-3845. doi: 10.1039/d1cs00617g.
6
Rational design of anti-inflammatory lipid nanoparticles for mRNA delivery.
J Biomed Mater Res A. 2022 May;110(5):1101-1108. doi: 10.1002/jbm.a.37356. Epub 2022 Jan 25.
7
An ionizable lipid toolbox for RNA delivery.
Nat Commun. 2021 Dec 13;12(1):7233. doi: 10.1038/s41467-021-27493-0.
8
Non-liver mRNA Delivery.
Acc Chem Res. 2022 Jan 4;55(1):13-23. doi: 10.1021/acs.accounts.1c00601. Epub 2021 Dec 3.
9
Chemistry of Lipid Nanoparticles for RNA Delivery.
Acc Chem Res. 2022 Jan 4;55(1):2-12. doi: 10.1021/acs.accounts.1c00544. Epub 2021 Dec 1.
10
mRNA vaccines for infectious diseases: principles, delivery and clinical translation.
Nat Rev Drug Discov. 2021 Nov;20(11):817-838. doi: 10.1038/s41573-021-00283-5. Epub 2021 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验