Suppr超能文献

使用深度学习的聚类增强股价预测

Clustering-enhanced stock price prediction using deep learning.

作者信息

Li Man, Zhu Ye, Shen Yuxin, Angelova Maia

机构信息

School of IT, Deakin University, Geelong, Australia.

College of Intelligence and Computing, Tianjin University, Tianjin, China.

出版信息

World Wide Web. 2023;26(1):207-232. doi: 10.1007/s11280-021-01003-0. Epub 2022 Apr 14.

Abstract

In recent years, artificial intelligence technologies have been successfully applied in time series prediction and analytic tasks. At the same time, a lot of attention has been paid to financial time series prediction, which targets the development of novel deep learning models or optimize the forecasting results. To optimize the accuracy of stock price prediction, in this paper, we propose a clustering-enhanced deep learning framework to predict stock prices with three matured deep learning forecasting models, such as Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN) and Gated Recurrent Unit (GRU). The proposed framework considers the clustering as the forecasting pre-processing, which can improve the quality of the training models. To achieve the effective clustering, we propose a new similarity measure, called Logistic Weighted Dynamic Time Warping (LWDTW), by extending a Weighted Dynamic Time Warping (WDTW) method to capture the relative importance of return observations when calculating distance matrices. Especially, based on the empirical distributions of stock returns, the cost weight function of WDTW is modified with logistic probability density distribution function. In addition, we further implement the clustering-based forecasting framework with the above three deep learning models. Finally, extensive experiments on daily US stock price data sets show that our framework has achieved excellent forecasting performance with overall best results for the combination of Logistic WDTW clustering and LSTM model using 5 different evaluation metrics.

摘要

近年来,人工智能技术已成功应用于时间序列预测和分析任务。与此同时,金融时间序列预测受到了广泛关注,其目标是开发新型深度学习模型或优化预测结果。为了优化股价预测的准确性,在本文中,我们提出了一种聚类增强的深度学习框架,使用长短期记忆(LSTM)、递归神经网络(RNN)和门控循环单元(GRU)这三种成熟的深度学习预测模型来预测股价。所提出的框架将聚类视为预测预处理,这可以提高训练模型的质量。为了实现有效的聚类,我们通过扩展加权动态时间规整(WDTW)方法,提出了一种新的相似性度量,称为逻辑加权动态时间规整(LWDTW),以在计算距离矩阵时捕捉收益观测值的相对重要性。特别是,基于股票收益的经验分布,用逻辑概率密度分布函数修改了WDTW的成本权重函数。此外,我们进一步用上述三种深度学习模型实现了基于聚类的预测框架。最后,对美国每日股价数据集进行的大量实验表明,我们的框架在使用五种不同评估指标的情况下,对于逻辑WDTW聚类和LSTM模型的组合取得了优异的预测性能,总体结果最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ee7/9009501/5c78eaa0aa04/11280_2021_1003_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验