Grisafi Andrea, Salanne Mathieu
Institut Sciences du Calcul et des Données, ISCD, Sorbonne Université, F-75005 Paris, France.
Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, CNRS, F-75005 Paris, France.
J Chem Phys. 2024 Jul 14;161(2). doi: 10.1063/5.0218379.
A crucial aspect in the simulation of electrochemical interfaces consists in treating the distribution of electronic charge of electrode materials that are put in contact with an electrolyte solution. Recently, it has been shown how a machine-learning method that specifically targets the electronic charge density, also known as SALTED, can be used to predict the long-range response of metal electrodes in model electrochemical cells. In this work, we provide a full integration of SALTED with MetalWalls, a program for performing classical simulations of electrochemical systems. We do so by deriving a spherical harmonics extension of the Ewald summation method, which allows us to efficiently compute the electric field originated by the predicted electrode charge distribution. We show how to use this method to drive the molecular dynamics of an aqueous electrolyte solution under the quantum electric field of a gold electrode, which is matched to the accuracy of density-functional theory. Notably, we find that the resulting atomic forces present a small error of the order of 1 meV/Å, demonstrating the great effectiveness of adopting an electron-density path in predicting the electrostatics of the system. Upon running the data-driven dynamics over about 3 ns, we observe qualitative differences in the interfacial distribution of the electrolyte with respect to the results of a classical simulation. By greatly accelerating quantum-mechanics/molecular-mechanics approaches applied to electrochemical systems, our method opens the door to nanosecond timescales in the accurate atomistic description of the electrical double layer.
电化学界面模拟中的一个关键方面在于处理与电解质溶液接触的电极材料的电荷分布。最近,已经展示了一种专门针对电子电荷密度的机器学习方法,即所谓的SALTED,如何用于预测模型电化学电池中金属电极的长程响应。在这项工作中,我们将SALTED与MetalWalls进行了全面整合,MetalWalls是一个用于进行电化学系统经典模拟的程序。我们通过推导埃瓦尔德求和方法的球谐函数扩展来实现这一点,这使我们能够有效地计算由预测的电极电荷分布产生的电场。我们展示了如何使用这种方法在金电极的量子电场下驱动水性电解质溶液的分子动力学,其精度与密度泛函理论相匹配。值得注意的是,我们发现由此产生的原子力存在约1 meV/Å量级的小误差,这表明采用电子密度路径在预测系统静电学方面具有很大的有效性。在运行约3 ns的数据驱动动力学后,我们观察到电解质的界面分布与经典模拟结果存在定性差异。通过极大地加速应用于电化学系统的量子力学/分子力学方法,我们的方法为准确描述双电层的纳秒时间尺度打开了大门。