Suppr超能文献

优化疫苗接种点的位置以阻止人畜共患病的流行。

Optimizing the location of vaccination sites to stop a zoonotic epidemic.

机构信息

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru.

出版信息

Sci Rep. 2024 Jul 10;14(1):15910. doi: 10.1038/s41598-024-66674-x.

Abstract

Mass vaccinations are crucial public health interventions for curbing infectious diseases. Canine rabies control relies on mass dog vaccination campaigns (MDVCs) that are held annually across the globe. Dog owners must bring their pets to fixed vaccination sites, but sometimes target coverage is not achieved due to low participation. Travel distance to vaccination sites is an important barrier to participation. We aimed to increase MDVC participation in silico by optimally placing fixed-point vaccination locations. We quantified participation probability based on walking distance to the nearest vaccination site using regression models fit to participation data collected over 4 years. We used computational recursive interchange techniques to optimally place fixed-point vaccination sites and compared predicted participation with these optimally placed vaccination sites to actual locations used in previous campaigns. Algorithms that minimized average walking distance or maximized expected participation provided the best solutions. Optimal vaccination placement is expected to increase participation by 7% and improve spatial evenness of coverage, resulting in fewer under-vaccinated pockets. However, unevenness in workload across sites remained. Our data-driven algorithm optimally places limited resources to increase overall vaccination participation and equity. Field evaluations are essential to assess effectiveness and evaluate potentially longer waiting queues resulting from increased participation.

摘要

大规模疫苗接种是控制传染病的关键公共卫生干预措施。犬狂犬病控制依赖于全球范围内每年举行的大规模犬只疫苗接种运动(MDVC)。狗主人必须带他们的宠物到固定的疫苗接种点,但由于参与率低,有时无法实现目标覆盖率。到疫苗接种点的旅行距离是参与的一个重要障碍。我们旨在通过优化定点疫苗接种地点来提高 MDVC 的参与度。我们根据到最近的疫苗接种点的步行距离,使用回归模型来量化参与概率,该模型是根据过去 4 年收集的参与数据拟合的。我们使用计算递归交换技术来优化定点疫苗接种地点,并将预测的参与度与之前运动中使用的最佳接种地点进行比较。最小化平均步行距离或最大化预期参与度的算法提供了最佳解决方案。预计最佳疫苗接种地点将使参与率提高 7%,并提高覆盖范围的空间均匀性,从而减少未接种疫苗的口袋。然而,各地点的工作量仍存在不平衡。我们的数据驱动算法优化配置有限的资源,以提高整体疫苗接种参与度和公平性。现场评估对于评估有效性和评估因参与度提高而可能导致的更长的等待队列至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ac/11237137/116a6a1300bd/41598_2024_66674_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验