Suppr超能文献

运用排队论和空间优化提升大规模疫苗接种计划。

Enhancing mass vaccination programs with queueing theory and spatial optimization.

作者信息

Xie Sherrie, Rieders Maria, Changolkar Srisa, Bhattacharya Bhaswar B, Diaz Elvis W, Levy Michael Z, Castillo-Neyra Ricardo

机构信息

Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, United States.

Department of Operations, Information, and Decisions, The Wharton School, University of Pennsylvania, Philadelphia, PA, United States.

出版信息

Front Public Health. 2024 Dec 24;12:1440673. doi: 10.3389/fpubh.2024.1440673. eCollection 2024.

Abstract

BACKGROUND

Mass vaccination is a cornerstone of public health emergency preparedness and response. However, injudicious placement of vaccination sites can lead to the formation of long waiting lines or , which discourages individuals from waiting to be vaccinated and may thus jeopardize the achievement of public health targets. Queueing theory offers a framework for modeling queue formation at vaccination sites and its effect on vaccine uptake.

METHODS

We developed an algorithm that integrates queueing theory within a spatial optimization framework to optimize the placement of mass vaccination sites. The algorithm was built and tested using data from a mass dog rabies vaccination campaign in Arequipa, Peru. We compared expected vaccination coverage and losses from queueing (i.e., attrition) for sites optimized with our queue-conscious algorithm to those used in a previous vaccination campaign, as well as to sites obtained from a queue-naïve version of the same algorithm.

RESULTS

Sites placed by the queue-conscious algorithm resulted in 9-32% less attrition and 11-12% higher vaccination coverage compared to previously used sites and 9-19% less attrition and 1-2% higher vaccination coverage compared to sites placed by the queue-naïve algorithm. Compared to the queue-naïve algorithm, the queue-conscious algorithm placed more sites in densely populated areas to offset high arrival volumes, thereby reducing losses due to excessive queueing. These results were not sensitive to misspecification of queueing parameters or relaxation of the constant arrival rate assumption.

CONCLUSION

One should consider losses from queueing to optimally place mass vaccination sites, even when empirically derived queueing parameters are not available. Due to the negative impacts of excessive wait times on participant satisfaction, reducing queueing attrition is also expected to yield downstream benefits and improve vaccination coverage in subsequent mass vaccination campaigns.

摘要

背景

大规模疫苗接种是公共卫生应急准备和应对的基石。然而,疫苗接种点设置不当可能导致排起长队,这会使人们不愿等待接种,从而可能危及公共卫生目标的实现。排队论为模拟疫苗接种点的排队形成及其对疫苗接种率的影响提供了一个框架。

方法

我们开发了一种算法,将排队论整合到空间优化框架中,以优化大规模疫苗接种点的布局。该算法是使用秘鲁阿雷基帕市大规模犬类狂犬病疫苗接种活动的数据构建和测试的。我们将使用我们的考虑排队因素的算法优化后的接种点的预期疫苗接种覆盖率和排队损失(即损耗)与上一次疫苗接种活动中使用的接种点进行了比较,也与同一算法的不考虑排队因素版本得到的接种点进行了比较。

结果

与之前使用的接种点相比,考虑排队因素的算法设置的接种点损耗减少了9%-32%,疫苗接种覆盖率提高了11%-12%;与不考虑排队因素的算法设置的接种点相比,损耗减少了9%-19%,疫苗接种覆盖率提高了1%-2%。与不考虑排队因素的算法相比,考虑排队因素的算法在人口密集地区设置了更多的接种点,以抵消高接种量,从而减少了因过度排队造成的损失。这些结果对排队参数的错误设定或恒定到达率假设的放宽不敏感。

结论

即使没有根据经验得出的排队参数,也应考虑排队损失以优化大规模疫苗接种点的布局。由于过长等待时间对参与者满意度有负面影响,减少排队损耗预计还会产生下游效益,并提高后续大规模疫苗接种活动的疫苗接种覆盖率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9065/11703910/fa5cc45d5156/fpubh-12-1440673-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验