Electrical Power Engineering, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt.
Electrical Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt.
PLoS One. 2024 Jul 11;19(7):e0306540. doi: 10.1371/journal.pone.0306540. eCollection 2024.
With the rapid proliferation of portable and wearable electronics, energy autonomy through efficient energy harvesting has become paramount. Thermoelectric generators (TEGs) stand out as promising candidates due to their silent operation, high reliability, and maintenance-free nature. This paper presents the design, fabrication, and analysis of a micro-scale TEG for powering such devices. A planar configuration was employed for its inherent miniaturization advantages. Finite element analysis using ANSYS reveals that a double-layer device under a 50 K temperature gradient generates an impressive open-circuit voltage of 1417 mV and a power output of 2.4 μW, significantly exceeding its single-layer counterpart (226 mV, 0.12 μW). Validation against the analytical model results yields errors within 2.44% and 2.03% for voltage and power, respectively. Furthermore, a single-layer prototype fabricated using paper shadow masks and sputtering deposition exhibits a voltage of 131 mV for a 50 K temperature difference, thus confirming the feasibility of the proposed design. This work establishes a foundation for developing highly efficient micro-TEGs for powering next-generation portable and wearable electronics.
随着便携式和可穿戴电子设备的快速普及,通过高效的能量收集实现能源自主变得至关重要。热电发电机 (TEG) 因其静音运行、高可靠性和免维护特性而成为极具前景的候选者。本文提出了一种用于为这类设备供电的微尺度 TEG 的设计、制造和分析。平面配置因其固有的小型化优势而被采用。使用 ANSYS 进行的有限元分析表明,在 50 K 温度梯度下的双层器件可产生令人印象深刻的开路电压 1417 mV 和 2.4 μW 的功率输出,明显超过其单层对应物(226 mV,0.12 μW)。与分析模型结果的验证相比,电压和功率的误差分别在 2.44%和 2.03%以内。此外,使用纸张遮罩和溅射沉积制造的单层原型在 50 K 的温度差下表现出 131 mV 的电压,从而证实了所提出设计的可行性。这项工作为开发用于下一代便携式和可穿戴电子设备的高效微 TEG 奠定了基础。