Suppr超能文献

用于盘式微流控生物医学应用的微功率发电装置的设计与开发。

Design and Development of Micro-Power Generating Device for Biomedical Applications of Lab-on-a-Disc.

作者信息

Joseph Karunan, Ibrahim Fatimah, Cho Jongman, Thio Tzer Hwai Gilbert, Al-Faqheri Wisam, Madou Marc

机构信息

Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; Centre for Innovations in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia.

Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; Centre for Innovations in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; Department of Biomedical Engineering, Inje University, Gimhae, South Korea.

出版信息

PLoS One. 2015 Sep 30;10(9):e0136519. doi: 10.1371/journal.pone.0136519. eCollection 2015.

Abstract

The development of micro-power generators for centrifugal microfluidic discs enhances the platform as a green point-of-care diagnostic system and eliminates the need for attaching external peripherals to the disc. In this work, we present micro-power generators that harvest energy from the disc's rotational movement to power biomedical applications on the disc. To implement these ideas, we developed two types of micro-power generators using piezoelectric films and an electromagnetic induction system. The piezoelectric-based generator takes advantage of the film's vibration during the disc's rotational motion, whereas the electromagnetic induction-based generator operates on the principle of current generation in stacks of coil exposed to varying magnetic flux. We have successfully demonstrated that at the spinning speed of 800 revolutions per minute (RPM) the piezoelectric film-based generator is able to produce up to 24 microwatts using 6 sets of films and the magnetic induction-based generator is capable of producing up to 125 milliwatts using 6 stacks of coil. As a proof of concept, a custom made localized heating system was constructed to test the capability of the magnetic induction-based generator. The heating system was able to achieve a temperature of 58.62 °C at 2200 RPM. This development of lab-on-a-disc micro power generators preserves the portability standards and enhances the future biomedical applications of centrifugal microfluidic platforms.

摘要

用于离心微流控芯片的微型发电机的开发提升了该平台作为绿色即时诊断系统的性能,并且无需在芯片上连接外部设备。在这项工作中,我们展示了从芯片旋转运动中获取能量以为芯片上的生物医学应用供电的微型发电机。为实现这些想法,我们使用压电薄膜和电磁感应系统开发了两种类型的微型发电机。基于压电的发电机利用芯片旋转运动过程中薄膜的振动,而基于电磁感应的发电机则基于暴露于变化磁通量的线圈堆栈中产生电流的原理运行。我们已成功证明,在每分钟800转(RPM)的旋转速度下,基于压电薄膜的发电机使用6组薄膜能够产生高达24微瓦的功率,基于磁感应的发电机使用6组线圈堆栈能够产生高达125毫瓦的功率。作为概念验证,构建了一个定制的局部加热系统来测试基于磁感应的发电机的能力。该加热系统在2200 RPM时能够达到58.62°C的温度。这种盘上实验室微型发电机的开发保持了便携性标准,并增强了离心微流控平台未来的生物医学应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/327d/4589339/605c15eb32fb/pone.0136519.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验