Suppr超能文献

2020-2023 年期间纽约市 COVID-19 大流行多个波次的 SARS-CoV-2 血清学调查。

SARS-CoV-2 serosurvey across multiple waves of the COVID-19 pandemic in New York City between 2020-2023.

机构信息

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

Nat Commun. 2024 Jul 11;15(1):5847. doi: 10.1038/s41467-024-50052-2.

Abstract

Sero-monitoring provides context to the epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and changes in population immunity following vaccine introduction. Here, we describe results of a cross-sectional hospital-based study of anti-spike seroprevalence in New York City (NYC) from February 2020 to July 2022, and a follow-up period from August 2023 to October 2023. Samples from 55,092 individuals, spanning five epidemiological waves were analyzed. Prevalence ratios (PR) were obtained using Poisson regression. Anti-spike antibody levels increased gradually over the first two waves, with a sharp increase during the 3rd wave coinciding with SARS-CoV-2 vaccination in NYC resulting in seroprevalence levels >90% by July 2022. Our data provide insights into the dynamic changes in immunity occurring in a large and diverse metropolitan community faced with a new viral pathogen and reflects the patterns of antibody responses as the pandemic transitions into an endemic stage.

摘要

血清监测为严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 感染的流行病学以及疫苗接种引入后人群免疫力的变化提供了背景信息。在这里,我们描述了 2020 年 2 月至 2022 年 7 月期间在纽约市 (NYC) 进行的一项基于医院的横断面研究中抗刺突血清阳性率的结果,以及 2023 年 8 月至 2023 年 10 月的后续期间。分析了来自 55092 个人的样本,跨越了五个流行病学波。使用泊松回归获得了患病率比 (PR)。在前两波中,抗刺突抗体水平逐渐增加,第 3 波期间急剧增加,与 SARS-CoV-2 在 NYC 的接种同时发生,导致 2022 年 7 月前血清阳性率>90%。我们的数据提供了对大都市社区中新型病毒病原体发生的免疫动态变化的深入了解,并反映了随着大流行进入流行阶段抗体反应模式的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4577/11239669/957976ac6bed/41467_2024_50052_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验