Suvarna Manu, Zou Tangsheng, Chong Sok Ho, Ge Yuzhen, Martín Antonio J, Pérez-Ramírez Javier
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
Nat Commun. 2024 Jul 11;15(1):5844. doi: 10.1038/s41467-024-50215-1.
Developing efficient catalysts for syngas-based higher alcohol synthesis (HAS) remains a formidable research challenge. The chain growth and CO insertion requirements demand multicomponent materials, whose complex reaction dynamics and extensive chemical space defy catalyst design norms. We present an alternative strategy by integrating active learning into experimental workflows, exemplified via the FeCoCuZr catalyst family. Our data-aided framework streamlines navigation of the extensive composition and reaction condition space in 86 experiments, offering >90% reduction in environmental footprint and costs over traditional programs. It identifies the FeCoCuZr catalyst with optimized reaction conditions to attain higher alcohol productivities of 1.1 g h g under stable operation for 150 h on stream, a 5-fold improvement over typically reported yields. Characterization reveals catalytic properties linked to superior activities despite moderate higher alcohol selectivities. To better reflect catalyst demands, we devise multi-objective optimization to maximize higher alcohol productivity while minimizing undesired CO and CH selectivities. An intrinsic trade-off between these metrics is uncovered, identifying Pareto-optimal catalysts not readily discernible by human experts. Finally, based on feature-importance analysis, we formulate data-informed guidelines to develop performance-specific FeCoCuZr systems. This approach goes beyond existing HAS catalyst design strategies, is adaptable to broader catalytic transformations, and fosters laboratory sustainability.
开发用于合成气制高级醇(HAS)的高效催化剂仍然是一项艰巨的研究挑战。链增长和CO插入要求需要多组分材料,其复杂的反应动力学和广阔的化学空间违背了催化剂设计规范。我们提出了一种将主动学习整合到实验工作流程中的替代策略,以FeCoCuZr催化剂家族为例进行说明。我们的数据辅助框架简化了86个实验中对广泛组成和反应条件空间的探索,与传统方案相比,环境足迹和成本降低了90%以上。它确定了具有优化反应条件的FeCoCuZr催化剂,在稳定运行150小时的条件下,高级醇生产率达到1.1 g h g,比通常报道的产率提高了5倍。表征显示,尽管高级醇选择性适中,但催化性能与优异的活性相关。为了更好地反映催化剂需求,我们设计了多目标优化,以最大化高级醇生产率,同时最小化不期望的CO和CH选择性。发现了这些指标之间的内在权衡,确定了人类专家不易察觉的帕累托最优催化剂。最后,基于特征重要性分析,我们制定了数据驱动的指导方针,以开发性能特定的FeCoCuZr体系。这种方法超越了现有的HAS催化剂设计策略,适用于更广泛的催化转化,并促进了实验室的可持续性。