Suppr超能文献

基于特征熵的时间序列特征以支持多变量时间序列分类。

Eigen-entropy based time series signatures to support multivariate time series classification.

作者信息

Patharkar Abhidnya, Huang Jiajing, Wu Teresa, Forzani Erica, Thomas Leslie, Lind Marylaura, Gades Naomi

机构信息

School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, 85281, USA.

ASU-Mayo Center for Innovative Imaging, Arizona State University, Tempe, AZ, 85281, USA.

出版信息

Sci Rep. 2024 Jul 12;14(1):16076. doi: 10.1038/s41598-024-66953-7.

Abstract

Most current algorithms for multivariate time series classification tend to overlook the correlations between time series of different variables. In this research, we propose a framework that leverages Eigen-entropy along with a cumulative moving window to derive time series signatures to support the classification task. These signatures are enumerations of correlations among different time series considering the temporal nature of the dataset. To manage dataset's dynamic nature, we employ preprocessing with dense multi scale entropy. Consequently, the proposed framework, Eigen-entropy-based Time Series Signatures, captures correlations among multivariate time series without losing its temporal and dynamic aspects. The efficacy of our algorithm is assessed using six binary datasets sourced from the University of East Anglia, in addition to a publicly available gait dataset and an institutional sepsis dataset from the Mayo Clinic. We use recall as the evaluation metric to compare our approach against baseline algorithms, including dependent dynamic time warping with 1 nearest neighbor and multivariate multi-scale permutation entropy. Our method demonstrates superior performance in terms of recall for seven out of the eight datasets.

摘要

当前大多数用于多变量时间序列分类的算法往往会忽略不同变量的时间序列之间的相关性。在本研究中,我们提出了一个框架,该框架利用特征熵和累积移动窗口来导出时间序列特征,以支持分类任务。这些特征是考虑到数据集的时间特性对不同时间序列之间相关性的枚举。为了处理数据集的动态特性,我们采用了密集多尺度熵的预处理方法。因此,所提出的基于特征熵的时间序列特征框架能够捕捉多变量时间序列之间的相关性,同时又不会丢失其时间和动态方面的信息。我们使用来自东英吉利大学的六个二元数据集,以及一个公开可用的步态数据集和梅奥诊所的一个机构脓毒症数据集来评估我们算法的有效性。我们使用召回率作为评估指标,将我们的方法与基线算法进行比较,这些基线算法包括带1个最近邻的相关动态时间规整和多变量多尺度排列熵。在八个数据集中的七个数据集上,我们的方法在召回率方面表现出卓越的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/11239935/8bf5f4faafc8/41598_2024_66953_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验