文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Eigen-entropy based time series signatures to support multivariate time series classification.

作者信息

Patharkar Abhidnya, Huang Jiajing, Wu Teresa, Forzani Erica, Thomas Leslie, Lind Marylaura, Gades Naomi

机构信息

School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, 85281, USA.

ASU-Mayo Center for Innovative Imaging, Arizona State University, Tempe, AZ, 85281, USA.

出版信息

Sci Rep. 2024 Jul 12;14(1):16076. doi: 10.1038/s41598-024-66953-7.


DOI:10.1038/s41598-024-66953-7
PMID:38992044
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11239935/
Abstract

Most current algorithms for multivariate time series classification tend to overlook the correlations between time series of different variables. In this research, we propose a framework that leverages Eigen-entropy along with a cumulative moving window to derive time series signatures to support the classification task. These signatures are enumerations of correlations among different time series considering the temporal nature of the dataset. To manage dataset's dynamic nature, we employ preprocessing with dense multi scale entropy. Consequently, the proposed framework, Eigen-entropy-based Time Series Signatures, captures correlations among multivariate time series without losing its temporal and dynamic aspects. The efficacy of our algorithm is assessed using six binary datasets sourced from the University of East Anglia, in addition to a publicly available gait dataset and an institutional sepsis dataset from the Mayo Clinic. We use recall as the evaluation metric to compare our approach against baseline algorithms, including dependent dynamic time warping with 1 nearest neighbor and multivariate multi-scale permutation entropy. Our method demonstrates superior performance in terms of recall for seven out of the eight datasets.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/11239935/7db76774fee5/41598_2024_66953_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/11239935/8bf5f4faafc8/41598_2024_66953_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/11239935/373774b67cbd/41598_2024_66953_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/11239935/d88bc0a78258/41598_2024_66953_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/11239935/a2c9f2af5fa7/41598_2024_66953_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/11239935/074fb3521238/41598_2024_66953_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/11239935/7db76774fee5/41598_2024_66953_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/11239935/8bf5f4faafc8/41598_2024_66953_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/11239935/373774b67cbd/41598_2024_66953_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/11239935/d88bc0a78258/41598_2024_66953_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/11239935/a2c9f2af5fa7/41598_2024_66953_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/11239935/074fb3521238/41598_2024_66953_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/11239935/7db76774fee5/41598_2024_66953_Fig5_HTML.jpg

相似文献

[1]
Eigen-entropy based time series signatures to support multivariate time series classification.

Sci Rep. 2024-7-12

[2]
Data Augmentation with Suboptimal Warping for Time-Series Classification.

Sensors (Basel). 2019-12-23

[3]
Implementation and evaluation of a multivariate abstraction-based, interval-based dynamic time-warping method as a similarity measure for longitudinal medical records.

J Biomed Inform. 2021-11

[4]
Empirical study of seven data mining algorithms on different characteristics of datasets for biomedical classification applications.

Biomed Eng Online. 2017-11-2

[5]
Composite Multivariate Multi-Scale Permutation Entropy and Laplacian Score Based Fault Diagnosis of Rolling Bearing.

Entropy (Basel). 2022-1-21

[6]
Tsallis Entropy-Based Complexity-IPE Casualty Plane: A Novel Method for Complex Time Series Analysis.

Entropy (Basel). 2024-6-17

[7]
Which Multivariate Multi-Scale Entropy Algorithm Is More Suitable for Analyzing the EEG Characteristics of Mild Cognitive Impairment?

Entropy (Basel). 2023-2-21

[8]
Characterizing unstructured data with the nearest neighbor permutation entropy.

Chaos. 2024-5-1

[9]
Time-Shift Multi-scale Weighted Permutation Entropy and GWO-SVM Based Fault Diagnosis Approach for Rolling Bearing.

Entropy (Basel). 2019-6-25

[10]
MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.

BMC Syst Biol. 2018-12-14

引用本文的文献

[1]
LiveDrive AI: A Pilot Study of a Machine Learning-Powered Diagnostic System for Real-Time, Non-Invasive Detection of Mild Cognitive Impairment.

Bioengineering (Basel). 2025-1-17

[2]
Predictive modeling of biomedical temporal data in healthcare applications: review and future directions.

Front Physiol. 2024-10-15

本文引用的文献

[1]
STRIDE: Systematic Radar Intelligence Analysis for ADRD Risk Evaluation with Gait Signature Simulation and Deep Learning.

IEEE Sens J. 2023-5-15

[2]
The great multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic advances.

Data Min Knowl Discov. 2021

[3]
Early Prediction of Sepsis From Clinical Data: The PhysioNet/Computing in Cardiology Challenge 2019.

Crit Care Med. 2020-2

[4]
Comparing different supervised machine learning algorithms for disease prediction.

BMC Med Inform Decis Mak. 2019-12-21

[5]
Classification of fever patterns using a single extracted entropy feature: A feasibility study based on Sample Entropy.

Math Biosci Eng. 2019-9-30

[6]
Generalizing DTW to the multi-dimensional case requires an adaptive approach.

Data Min Knowl Discov. 2017-1

[7]
Clinical time series prediction: Toward a hierarchical dynamical system framework.

Artif Intell Med. 2015-9

[8]
A comparison of different diagnostic criteria of acute kidney injury in critically ill patients.

Crit Care. 2014-7-8

[9]
A bag-of-features framework to classify time series.

IEEE Trans Pattern Anal Mach Intell. 2013-11

[10]
Raising awareness of acute kidney injury: a global perspective of a silent killer.

Kidney Int. 2013-5-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索