Qi Qinghai, Wu Jinyang, Gueymard Christran A, Qin Wenmin, Wang Lunche, Zhou Zhigao, Niu Jiayun, Zhang Ming
Hubei Key Laboratory of Regional Ecology and Environment Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China.
Solar Consulting Services, Colebrook, NH, USA.
Sci Data. 2024 Jul 11;11(1):756. doi: 10.1038/s41597-024-03609-1.
Diffuse solar radiation (DSR) plays a critical role in renewable energy utilization and efficient agricultural production. However, there is a scarcity of high-precision, long-term, and spatially continuous datasets for DSR in the world, and particularly in China. To address this gap, a 41-year (1982-2022) daily diffuse solar radiation dataset (CHDSR) is constructed with a spatial resolution of 10 km, based on a new ensemble model that combines the clear-sky irradiance estimated by the REST2 model and a machine-learning technique using precise cloud information derived from reanalysis data. Validation against ground-based measurements indicates strong performance of the new hybrid model, with a correlation coefficient, root mean square error and mean bias error (MBE) of 0.94, 13.9 W m and -0.49 W m, respectively. The CHDSR dataset shows good spatial and temporal continuity over the time horizon from 1982 to 2022, with a multi-year mean value of 74.51 W m. This dataset is now freely available on figshare to the potential benefit of any analytical work in solar energy, agriculture, climate change, etc ( https://doi.org/10.6084/m9.figshare.21763223.v3 ).
散射太阳辐射(DSR)在可再生能源利用和高效农业生产中起着关键作用。然而,全球范围内,尤其是在中国,缺乏高精度、长期且空间连续的DSR数据集。为了填补这一空白,基于一种新的集成模型构建了一个41年(1982 - 2022年)的每日散射太阳辐射数据集(CHDSR),其空间分辨率为10公里。该模型结合了REST2模型估算的晴空辐照度和一种利用再分析数据得出的精确云信息的机器学习技术。与地面测量值的验证表明,新的混合模型表现出色,相关系数、均方根误差和平均偏差误差(MBE)分别为0.94、13.9 W/m²和 -0.49 W/m²。CHDSR数据集在1982年至2022年的时间范围内显示出良好的空间和时间连续性,多年平均值为74.51 W/m²。该数据集现已在figshare上免费提供,有望为太阳能、农业、气候变化等领域的任何分析工作带来益处(https://doi.org/10.6084/m9.figshare.21763223.v3)。