British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada.
The Consortium for Clinical Metagenomics in Infectious Diseases, Nashville, TN, USA.
Mol Diagn Ther. 2024 Sep;28(5):513-523. doi: 10.1007/s40291-024-00727-9. Epub 2024 Jul 11.
Central nervous system (CNS) infections carry a substantial burden of morbidity and mortality worldwide, and accurate and timely diagnosis is required to optimize management. Metagenomic next-generation sequencing (mNGS) has proven to be a valuable tool in detecting pathogens in patients with suspected CNS infection. By sequencing microbial nucleic acids present in a patient's cerebrospinal fluid, brain tissue, or samples collected outside of the CNS, such as plasma, mNGS can detect a wide range of pathogens, including rare, unexpected, and/or fastidious organisms. Furthermore, its target-agnostic approach allows for the identification of both known and novel pathogens. This is particularly useful in cases where conventional diagnostic methods fail to provide an answer. In addition, mNGS can detect multiple microorganisms simultaneously, which is crucial in cases of mixed infections without a clear predominant pathogen. Overall, clinical mNGS testing can help expedite the diagnostic process for CNS infections, guide appropriate management decisions, and ultimately improve clinical outcomes. However, there are key challenges surrounding its use that need to be considered to fully leverage its clinical impact. For example, only a few specialized laboratories offer clinical mNGS due to the complexity of both the laboratory methods and analysis pipelines. Clinicians interpreting mNGS results must be aware of both false negatives-as mNGS is a direct detection modality and requires a sufficient amount of microbial nucleic acid to be present in the sample tested-and false positives-as mNGS detects environmental microbes and their nucleic acids, despite best practices to minimize contamination. Additionally, current costs and turnaround times limit broader implementation of clinical mNGS. Finally, there is uncertainty regarding the best practices for clinical utilization of mNGS, and further work is needed to define the optimal patient population(s), syndrome(s), and time of testing to implement clinical mNGS.
中枢神经系统 (CNS) 感染在全球范围内造成了巨大的发病率和死亡率负担,需要准确和及时的诊断才能优化管理。宏基因组下一代测序 (mNGS) 已被证明是检测疑似 CNS 感染患者病原体的有价值工具。通过对患者脑脊液、脑组织或 CNS 外采集的样本(如血浆)中存在的微生物核酸进行测序,mNGS 可以检测到广泛的病原体,包括罕见、意外和/或难培养的生物体。此外,其无目标的方法允许识别已知和新型病原体。这在常规诊断方法无法提供答案的情况下特别有用。此外,mNGS 可以同时检测多种微生物,这对于没有明确主要病原体的混合感染至关重要。总体而言,临床 mNGS 检测可以帮助加快 CNS 感染的诊断过程,指导适当的管理决策,并最终改善临床结果。然而,在充分发挥其临床影响力方面,需要考虑其使用所面临的关键挑战。例如,由于实验室方法和分析管道的复杂性,只有少数几家专门的实验室提供临床 mNGS。解释 mNGS 结果的临床医生必须意识到假阴性的问题 - mNGS 是一种直接检测方式,需要在测试样本中存在足够数量的微生物核酸 - 以及假阳性的问题 - mNGS 会检测环境微生物及其核酸,尽管采取了最佳措施来尽量减少污染。此外,目前的成本和周转时间限制了临床 mNGS 的更广泛实施。最后,临床应用 mNGS 的最佳实践存在不确定性,需要进一步的工作来定义最佳的患者人群、综合征和测试时间,以实施临床 mNGS。
Arch Ital Urol Androl. 2025-6-30
2025-1
J Int Med Res. 2025-8
J Pediatric Infect Dis Soc. 2025-7-26
J Neuropathol Exp Neurol. 2025-6-1
Metabolites. 2024-12-6