Suppr超能文献

利用血清代谢组学分析进行血流感染的早期诊断

Early Diagnosis of Bloodstream Infections Using Serum Metabolomic Analysis.

作者信息

Han Shuang, Li Ruihua, Wang Hao, Wang Lin, Gao Yiming, Wen Yaolin, Gong Tianyang, Ruan Shiyu, Li Hui, Gao Peng

机构信息

Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.

School of statistics, Dongbei University of Finance and Economics, Dalian 116025, China.

出版信息

Metabolites. 2024 Dec 6;14(12):685. doi: 10.3390/metabo14120685.

Abstract

BACKGROUND

Bloodstream infections (BSIs) pose a great challenge to treating patients, especially those with underlying diseases, such as immunodeficiency diseases. Early diagnosis helps to direct precise empirical antibiotic administration and proper clinical management. This study carried out a serum metabolomic analysis using blood specimens sampled from patients with a suspected infection whose routine culture results were later demonstrated to be positive.

METHODS

A liquid chromatograph-mass spectrometry-based metabolomic analysis was carried out to profile the BSI serum samples. The serum metabolomics data could be used to successfully differentiate BSIs from non-BSIs.

RESULTS

The major classes of the isolated pathogens (e.g., Gram-positive and Gram-negative bacteria) could be differentiated using our optimized statistical algorithms. In addition, by using different machine-learning algorithms, the isolated pathogens could also be classified at the species levels (e.g., and ) or according to their specific antibiotic-resistant phenotypes (e.g., extended-spectrum β-lactamase-producing and non-producing phenotypes) if needed.

CONCLUSIONS

This study provides an early diagnosis method that could be an alternative to the traditional time-consuming culture process to identify BSIs. Moreover, this metabolomics strategy was less affected by several risk factors (e.g., antibiotics administration) that could produce false culture results.

摘要

背景

血流感染(BSIs)对患者治疗构成巨大挑战,尤其是对患有基础疾病(如免疫缺陷疾病)的患者。早期诊断有助于指导精确的经验性抗生素给药和适当的临床管理。本研究对疑似感染患者采集的血液标本进行血清代谢组学分析,这些患者的常规培养结果后来被证明为阳性。

方法

基于液相色谱-质谱的代谢组学分析用于分析血流感染血清样本。血清代谢组学数据可成功区分血流感染和非血流感染。

结果

使用我们优化的统计算法可以区分分离出的主要病原体类别(如革兰氏阳性菌和革兰氏阴性菌)。此外,如果需要,通过使用不同的机器学习算法,分离出的病原体还可以在物种水平(如 和 )或根据其特定的抗生素耐药表型(如产超广谱β-内酰胺酶和不产超广谱β-内酰胺酶表型)进行分类。

结论

本研究提供了一种早期诊断方法,可作为传统耗时培养过程的替代方法来识别血流感染。此外,这种代谢组学策略受几种可能产生假培养结果的风险因素(如抗生素给药)的影响较小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8d7/11676852/00744a83680e/metabolites-14-00685-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验