Sarkar Debarghya, Dannenberg Paul H, Martino Nicola, Kim Kwon-Hyeon, Yun Seok-Hyun
Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Lansdowne St., Cambridge, Massachusetts 02139, United States.
Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Adv Photonics. 2023 Sep;5(5). doi: 10.1117/1.ap.5.5.056004. Epub 2023 Sep 1.
Micro- and nano-disk lasers have emerged as promising optical sources and probes for on-chip and free-space applications. However, the randomness in disk diameter introduced by standard nanofabrication makes it challenging to obtain deterministic wavelengths. To address this, we developed a photoelectrochemical (PEC) etching-based technique that enables us to precisely tune the lasing wavelength with sub-nanometer accuracy. We examined the PEC mechanism and compound semiconductor etching rate in diluted sulfuric acid solution. Using this technique, we produced microlasers on a chip and isolated particles with distinct lasing wavelengths. Our results demonstrate that this scalable technique can be used to produce groups of lasers with precise emission wavelengths for various nanophotonic and biomedical applications.
微盘激光器和纳米盘激光器已成为用于片上和自由空间应用的有前景的光源和探测器。然而,标准纳米制造工艺引入的盘直径随机性使得获得确定性波长具有挑战性。为了解决这个问题,我们开发了一种基于光电化学(PEC)蚀刻的技术,使我们能够以亚纳米精度精确调谐激光波长。我们研究了在稀硫酸溶液中的PEC机制和化合物半导体蚀刻速率。利用这项技术,我们在芯片上制造了微激光器,并分离出具有不同激光波长的粒子。我们的结果表明,这种可扩展技术可用于生产具有精确发射波长的激光组,用于各种纳米光子学和生物医学应用。