1] Sandia National Laboratories, Albuquerque, New Mexico 87185, USA [2] Center for High Technology Materials, The University of New Mexico, Albuquerque, New Mexico 87106, USA.
Sci Rep. 2013 Oct 18;3:2982. doi: 10.1038/srep02982.
Emerging applications such as solid-state lighting and display technologies require micro-scale vertically emitting lasers with controllable distinct lasing wavelengths and broad wavelength tunability arranged in desired geometrical patterns to form "super-pixels". Conventional edge-emitting lasers and current surface-emitting lasers that require abrupt changes in semiconductor bandgaps or cavity length are not a viable solution. Here, we successfully address these challenges by introducing a new paradigm that extends the laser tuning range additively by employing multiple monolithically grown gain sections each with a different emission centre wavelength. We demonstrate this using broad gain-bandwidth III-nitride multiple quantum well (MQW) heterostructures and a novel top-down nanowire photonic crystal nanofabrication. We obtain single-mode lasing in the blue-violet spectral region with a remarkable 60 nm of tuning (or 16% of the nominal centre wavelength) that is determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.
新兴应用,如固态照明和显示技术,需要微尺度垂直发射激光器,其具有可控的独特激射波长和宽波长可调谐性,按所需的几何图案排列以形成“超像素”。传统的边发射激光器和当前的表面发射激光器需要半导体能带隙或腔长的急剧变化,因此不是可行的解决方案。在这里,我们通过引入一种新的范例成功地解决了这些挑战,该范例通过使用多个具有不同发射中心波长的单片生长增益部分来附加地扩展激光调谐范围。我们使用宽带隙 III 族氮化物多量子阱(MQW)异质结构和新颖的自上而下纳米线光子晶体纳米制造来演示这一点。我们在蓝紫光光谱区域获得了单模激光,其调谐范围高达 60nm(或标称中心波长的 16%),这完全由光子晶体几何形状决定。这种方法可以扩展到整个可见光谱。