Suppr超能文献

减少混合效应模型中非正定协方差矩阵的发生率。

Reducing Incidence of Nonpositive Definite Covariance Matrices in Mixed Effect Models.

机构信息

Arizona State University.

University of North Carolina, Chapel Hill.

出版信息

Multivariate Behav Res. 2022 Mar-May;57(2-3):318-340. doi: 10.1080/00273171.2020.1830019. Epub 2020 Oct 14.

Abstract

Deciding which random effects to retain is a central decision in mixed effect models. Recent recommendations advise a maximal structure whereby all theoretically relevant random effects are retained. Nonetheless, including many random effects often leads to nonpositive definiteness. A typical remedy is to simplify the random effect structure by removing random effects or associated covariances. However, this practice is known to bias estimates of remaining covariance parameters and compromise fixed effect inferences. Cholesky decompositions frequently are suggested as an alternative and are automatically implemented in some software. Instead of Cholesky decompositions, we describe factor analytic structures as an approach to avoid nonpositive definiteness. This approach is occasionally employed in biosciences like plant breeding, but, ironically, has not been established in behavioral sciences despite the close historical connection with factor analysis in these fields. We discuss how a factor analytic structure facilitates estimation and conduct simulations to compare convergence and performance to simplifying the random effects structure or Cholesky decomposition approaches. Results show a lower rate of nonpositive definiteness with the factor analytic structure than Cholesky decomposition and suggest that factor analytic covariance structure may be useful to combating nonpositive definiteness, especially in models with many random effects.

摘要

确定保留哪些随机效应是混合效应模型中的一个核心决策。最近的建议建议采用最大结构,即保留所有理论上相关的随机效应。然而,包含许多随机效应通常会导致非正定。一种常见的补救方法是通过删除随机效应或相关协方差来简化随机效应结构。然而,这种做法已知会偏估计剩余协方差参数,并损害固定效应推断。Cholesky 分解经常被建议作为一种替代方法,并在一些软件中自动实现。我们描述因子分析结构作为避免非正定的一种方法,而不是 Cholesky 分解。这种方法在植物育种等生物科学中偶尔使用,但具有讽刺意味的是,尽管与这些领域的因子分析有着密切的历史联系,但在行为科学中尚未建立。我们讨论了因子分析结构如何促进估计,并进行模拟比较简化随机效应结构或 Cholesky 分解方法的收敛性和性能。结果表明,因子分析结构比 Cholesky 分解具有更低的非正定率,并表明因子分析协方差结构可能有助于克服非正定,特别是在具有许多随机效应的模型中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验