文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

自杀预测的新兴主题与研究前沿:一项科学计量学分析

Emerging Themes and Research Frontiers in Suicide Prediction: A Scientometric Analysis.

作者信息

Abraham Kochumol, K R Anish, Toms Greety, Francis P Nice Mary, Babu Jobi

机构信息

Department of Computer Applications, Marian College Kuttikkanam, Peermade, IND.

Department of Social Work, Rajagiri College of Social Sciences, Kalamassery, IND.

出版信息

Cureus. 2024 Jun 11;16(6):e62139. doi: 10.7759/cureus.62139. eCollection 2024 Jun.


DOI:10.7759/cureus.62139
PMID:38993467
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11238264/
Abstract

Suicide remains a critical global health issue despite advancements in mental health treatment. The purpose of this analysis is to emphasize the development, patterns, and noteworthy outcomes of suicide prediction research. It also helps to uncover gaps and areas of under-researched topics within suicide prediction. A scientometric analysis was conducted using Biblioshiny and VOSviewer. To thoroughly assess the academic literature on suicide prediction, various scientometric methodologies such as trend analysis and citation analysis were employed. We utilized the temporal features of the Web of Science to analyze publication trends over time. Author affiliation data were used to investigate the geographic distribution of research. Cluster analysis was performed by grouping related keywords into clusters to identify overarching themes within the literature. A total of 1,703 articles from 828 different sources, spanning from 1942 to 2023, were collected for the analysis. Machine learning techniques might have a big influence on suicide-related event prediction, which would enhance attempts at suicide prevention and intervention. The conceptual understanding of suicide prediction is enhanced by scientometric analysis, which further uncovers the research gap and literature in this area. Suicide prediction research underscores that suicidal behavior is not caused by a single factor but is the result of a complex interplay of multiple factors. These factors may include biological, psychological, social, and environmental factors. Understanding and integrating these factors into predictive models is a theoretical advancement in the field. Unlike previous bibliometric studies in the field of suicide prediction that have typically focused on specific subtopics or data sources, our analysis offers a comprehensive mapping of the entire landscape. We encompass a wide range of suicide prediction literature, including research from medical, psychological, and social science domains, thus providing a holistic overview.

摘要

尽管心理健康治疗取得了进展,但自杀仍然是一个关键的全球健康问题。本分析的目的是强调自杀预测研究的发展、模式和值得关注的成果。它还有助于发现自杀预测领域研究不足的差距和领域。使用Biblioshiny和VOSviewer进行了科学计量分析。为了全面评估关于自杀预测的学术文献,采用了各种科学计量方法,如趋势分析和引文分析。我们利用科学引文索引(Web of Science)的时间特征来分析随时间的出版趋势。作者所属机构数据用于调查研究的地理分布。通过将相关关键词分组进行聚类分析,以识别文献中的总体主题。总共收集了1942年至2023年期间来自828个不同来源的1703篇文章进行分析。机器学习技术可能对自杀相关事件预测有重大影响,这将加强自杀预防和干预的努力。科学计量分析增强了对自杀预测的概念理解,进一步揭示了该领域的研究差距和文献。自杀预测研究强调,自杀行为不是由单一因素引起的,而是多种因素复杂相互作用的结果。这些因素可能包括生物、心理、社会和环境因素。将这些因素理解并整合到预测模型中是该领域的一项理论进步。与以往自杀预测领域的文献计量研究通常只关注特定子主题或数据源不同,我们的分析提供了整个领域的全面映射。我们涵盖了广泛的自杀预测文献,包括医学、心理学和社会科学领域的研究,从而提供了一个全面的概述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11238264/af04a8c0e27d/cureus-0016-00000062139-i08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11238264/b9f52118ca13/cureus-0016-00000062139-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11238264/bb056bf95b76/cureus-0016-00000062139-i02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11238264/6f631c0edfd7/cureus-0016-00000062139-i03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11238264/926bfb26aa65/cureus-0016-00000062139-i04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11238264/dd7ca159a112/cureus-0016-00000062139-i05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11238264/831fe308e1d6/cureus-0016-00000062139-i06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11238264/ce5cc1c4c32a/cureus-0016-00000062139-i07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11238264/af04a8c0e27d/cureus-0016-00000062139-i08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11238264/b9f52118ca13/cureus-0016-00000062139-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11238264/bb056bf95b76/cureus-0016-00000062139-i02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11238264/6f631c0edfd7/cureus-0016-00000062139-i03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11238264/926bfb26aa65/cureus-0016-00000062139-i04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11238264/dd7ca159a112/cureus-0016-00000062139-i05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11238264/831fe308e1d6/cureus-0016-00000062139-i06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11238264/ce5cc1c4c32a/cureus-0016-00000062139-i07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11238264/af04a8c0e27d/cureus-0016-00000062139-i08.jpg

相似文献

[1]
Emerging Themes and Research Frontiers in Suicide Prediction: A Scientometric Analysis.

Cureus. 2024-6-11

[2]
Bibliometric and scientometric analysis of PSMA-targeted radiotheranostics: knowledge mapping and global standing.

Front Oncol. 2024-7-1

[3]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[4]
Apple Leave Disease Detection Using Collaborative ML/DL and Artificial Intelligence Methods: Scientometric Analysis.

Int J Environ Res Public Health. 2023-2-12

[5]
The 100 most-cited articles on bibliotherapy: a bibliometric analysis.

Psychol Health Med. 2023

[6]
A Bibliometric Mapping Study of the Literature on Oral Health-related Quality of Life.

J Evid Based Dent Pract. 2023-1

[7]
A scientometric approach to psychological research during the COVID-19 pandemic.

Curr Psychol. 2023-1-23

[8]
Knowledge domain and emerging trends in multimorbidity and frailty research from 2003 to 2023: a scientometric study using citespace and VOSviewer.

Health Econ Rev. 2023-10-10

[9]
Knowledge mapping on the sun-induced chlorophyll fluorescence technology research: a scientometric and visualization analysis.

Environ Sci Pollut Res Int. 2024-2

[10]
The landscape of hot topics and research frontiers in Kawasaki disease: Scientometric analysis.

Heliyon. 2024-4-14

引用本文的文献

[1]
A Bibliometric Analysis of the Trends and Impact of Neuromarketing Research: Peering Into the Consumer Brain.

Cureus. 2024-9-13

本文引用的文献

[1]
Bibliometric Evaluation of the 100 Top-Cited Articles on Anesthesiology.

Cureus. 2023-12-22

[2]
Global Trends and Hotspots in Research on Tooth Agenesis: A 20-Year Bibliometric Analysis.

Cureus. 2023-10-13

[3]
Artificial intelligence-based approaches for suicide prediction: Hope or hype?

Asian J Psychiatr. 2023-10

[4]
The impact of Jürgen Habermas's scientific production: a scientometric review.

Scientometrics. 2023

[5]
Bibliometric Analysis on Bibliometric Studies of Case Reports in the Medical Field.

Cureus. 2022-10-4

[6]
Can we predict or prevent suicide?: An update.

Prev Med. 2021-11

[7]
Meta-analysis of the strength of exploratory suicide prediction models; from clinicians to computers.

BJPsych Open. 2021-1-7

[8]
AI enabled suicide prediction tools: a qualitative narrative review.

BMJ Health Care Inform. 2020-10

[9]
A bibliometric analysis using VOSviewer of publications on COVID-19.

Ann Transl Med. 2020-7

[10]
A machine learning approach predicts future risk to suicidal ideation from social media data.

NPJ Digit Med. 2020-5-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索