Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China.
J Mol Model. 2024 Jul 12;30(8):264. doi: 10.1007/s00894-024-06051-7.
Accurately predicting plasma protein binding rate (PPBR) and oral bioavailability (OBA) helps to better reveal the absorption and distribution of drugs in the human body and subsequent drug design. Although machine learning models have achieved good results in prediction accuracy, they often suffer from insufficient accuracy when dealing with data with irregular topological structures.
In view of this, this study proposes a pharmacokinetic parameter prediction framework based on graph convolutional networks (GCN), which predicts the PPBR and OBA of small molecule drugs. In the framework, GCN is first used to extract spatial feature information on the topological structure of drug molecules, in order to better learn node features and association information between nodes. Then, based on the principle of drug similarity, this study calculates the similarity between small molecule drugs, selects different thresholds to construct datasets, and establishes a prediction model centered on the GCN algorithm. The experimental results show that compared with traditional machine learning prediction models, the prediction model constructed based on the GCN method performs best on PPBR and OBA datasets with an inter-molecular similarity threshold of 0.25, with MAE of 0.155 and 0.167, respectively. In addition, in order to further improve the accuracy of the prediction model, GCN is combined with other algorithms. Compared to using a single GCN method, the distribution of the predicted values obtained by the combined model is highly consistent with the true values. In summary, this work provides a new method for improving the rate of early drug screening in the future.
准确预测血浆蛋白结合率(PPBR)和口服生物利用度(OBA)有助于更好地揭示药物在人体中的吸收和分布情况,从而为后续的药物设计提供参考。虽然机器学习模型在预测精度方面已经取得了不错的效果,但在处理具有不规则拓扑结构的数据时,它们的准确性往往会受到影响。
针对这一问题,本研究提出了一种基于图卷积网络(GCN)的药代动力学参数预测框架,用于预测小分子药物的 PPBR 和 OBA。在该框架中,首先使用 GCN 提取药物分子拓扑结构上的空间特征信息,以便更好地学习节点特征和节点之间的关联信息。然后,基于药物相似性原理,计算小分子药物之间的相似度,选择不同的阈值构建数据集,并以 GCN 算法为中心建立预测模型。实验结果表明,与传统的机器学习预测模型相比,基于 GCN 方法构建的预测模型在分子间相似度阈值为 0.25 的 PPBR 和 OBA 数据集上表现最佳,MAE 分别为 0.155 和 0.167。此外,为了进一步提高预测模型的准确性,将 GCN 与其他算法相结合。与仅使用单一 GCN 方法相比,组合模型得到的预测值分布与真实值高度一致。综上所述,这项工作为未来提高药物早期筛选的效率提供了一种新的方法。