Suppr超能文献

新型溶解度预测模型:分子指纹和物理化学特征与图卷积神经网络

Novel Solubility Prediction Models: Molecular Fingerprints and Physicochemical Features vs Graph Convolutional Neural Networks.

作者信息

Lee Sumin, Lee Myeonghun, Gyak Ki-Won, Kim Sung Dug, Kim Mi-Jeong, Min Kyoungmin

机构信息

Department of Industrial and Information Systems Engineering, School of Systems Biomedical Science, School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea.

Polymer Research Lab, Samsung Advanced Institute of Technology, 130 Samsung-ro, Suwon, Gyeonggi-do 16678, Republic of Korea.

出版信息

ACS Omega. 2022 Apr 4;7(14):12268-12277. doi: 10.1021/acsomega.2c00697. eCollection 2022 Apr 12.

Abstract

Predicting both accurate and reliable solubility values has long been a crucial but challenging task. In this work, surrogated model-based methods were developed to accurately predict the solubility of two molecules (solute and solvent) through machine learning and deep learning. The current study employed two methods: (1) converting molecules into molecular fingerprints and adding optimal physicochemical properties as descriptors and (2) using graph convolutional network (GCN) models to convert molecules into a graph representation and deal with prediction tasks. Then, two prediction tasks were conducted with each method: (1) the solubility value (regression) and (2) the solubility class (classification). The fingerprint-based method clearly demonstrates that high performance is possible by adding simple but significant physicochemical descriptors to molecular fingerprints, while the GCN method shows that it is possible to predict various properties of chemical compounds with relatively simplified features from the graph representation. The developed methodologies provide a comprehensive understanding of constructing a proper model for predicting solubility and can be employed to find suitable solutes and solvents.

摘要

长期以来,预测准确且可靠的溶解度值一直是一项至关重要但具有挑战性的任务。在这项工作中,开发了基于替代模型的方法,通过机器学习和深度学习来准确预测两种分子(溶质和溶剂)的溶解度。当前的研究采用了两种方法:(1)将分子转化为分子指纹,并添加最佳物理化学性质作为描述符;(2)使用图卷积网络(GCN)模型将分子转化为图表示并处理预测任务。然后,每种方法都进行了两项预测任务:(1)溶解度值(回归)和(2)溶解度类别(分类)。基于指纹的方法清楚地表明,通过向分子指纹添加简单但重要的物理化学描述符可以实现高性能,而GCN方法表明,从图表示中具有相对简化的特征就有可能预测化合物的各种性质。所开发的方法为构建用于预测溶解度的合适模型提供了全面的理解,并且可用于寻找合适的溶质和溶剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2732/9016862/63de573df62f/ao2c00697_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验