Suppr超能文献

成人肿瘤门诊患者营养不良风险与改良 Edmonton 症状评估系统(ESAS-r)评分的相关性:一项横断面研究。

The association between malnutrition risk and revised Edmonton Symptom Assessment System (ESAS-r) scores in an adult outpatient oncology population: a cross-sectional study.

机构信息

Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle Medical Sciences Building, Toronto, ON, M5S 1A8, Canada.

Waterloo Wellington Regional Cancer Program, Grand River Regional Cancer Centre, Kitchener, ON, Canada.

出版信息

J Patient Rep Outcomes. 2024 Jul 12;8(1):71. doi: 10.1186/s41687-024-00750-8.

Abstract

BACKGROUND

Cancer-associated malnutrition is associated with worse symptom severity, functional status, quality of life, and overall survival. Malnutrition in cancer patients is often under-recognized and undertreated, emphasizing the need for standardized pathways for nutritional management in this population. The objectives of this study were to (1) investigate the relationship between malnutrition risk and self-reported symptom severity scores in an adult oncology outpatient population and (2) to identify whether a secondary screening tool for malnutrition risk (abPG-SGA) should be recommended for patients with a specific ESAS-r cut-off score or group of ESAS-r cut-off scores.

METHODS

A single-institution retrospective cross-sectional study was conducted. Malnutrition risk was measured using the Abridged Patient-Generated Subjective Global Assessment (abPG-SGA). Cancer symptom severity was measured using the Revised Edmonton Symptom Assessment System (ESAS-r). In accordance with standard institutional practice, patients completed both tools at first consult at the cancer centre. Adult patients who completed the ESAS-r and abPG-SGA on the same day between February 2017 and January 2020 were included. Spearman's correlation, Mann Whitney U tests, receiver operating characteristic curves, and binary logistic regression models were used for statistical analyses.

RESULTS

2071 oncology outpatients met inclusion criteria (mean age 65.7), of which 33.6% were identified to be at risk for malnutrition. For all ESAS-r parameters (pain, tiredness, drowsiness, nausea, lack of appetite, shortness of breath, depression, anxiety, and wellbeing), patients at risk for malnutrition had significantly higher scores (P < 0.001). All ESAS-r parameters were positively correlated with abPG-SGA score (P < 0.01). The ESAS-r parameters that best predicted malnutrition risk status were total ESAS-r score, lack of appetite, tiredness, and wellbeing (area under the curve = 0.824, 0.812, 0.764, 0.761 respectively). Lack of appetite score ≥ 1 demonstrated a sensitivity of 77.4% and specificity of 77.0%. Combining lack of appetite score ≥ 1 with total ESAS score > 14 yielded a sensitivity of 87.9% and specificity of 62.8%.

CONCLUSION

Malnutrition risk as measured by the abPG-SGA and symptom severity scores as measured by the ESAS-r are positively and significantly correlated. Given the widespread use of the ESAS-r in cancer care, utilizing specific ESAS-r cut-offs to trigger malnutrition screening could be a viable way to identify cancer patients at risk for malnutrition.

摘要

背景

癌症相关的营养不良与更严重的症状严重程度、功能状态、生活质量和总体生存有关。癌症患者的营养不良往往未被识别和治疗不足,这强调了在这一人群中需要标准化的营养管理途径。本研究的目的是:(1)调查在成人肿瘤门诊人群中,营养不良风险与自我报告的症状严重程度评分之间的关系;(2)确定对于特定的 ESAS-r 截止评分或 ESAS-r 截止评分组的患者,是否应推荐使用二次营养不良风险筛查工具(abPG-SGA)。

方法

进行了一项单机构回顾性横断面研究。使用简化的患者主观整体评估(abPG-SGA)来衡量营养不良风险。使用修订后的埃德蒙顿症状评估系统(ESAS-r)来衡量癌症症状的严重程度。根据标准机构实践,患者在癌症中心的首次就诊时同时完成这两个工具。纳入了 2017 年 2 月至 2020 年 1 月期间在同一天完成 ESAS-r 和 abPG-SGA 的成年肿瘤门诊患者。使用 Spearman 相关、Mann-Whitney U 检验、受试者工作特征曲线和二项逻辑回归模型进行统计分析。

结果

2071 名肿瘤门诊患者符合纳入标准(平均年龄 65.7 岁),其中 33.6%被确定为有营养不良风险。对于所有 ESAS-r 参数(疼痛、疲劳、嗜睡、恶心、食欲不振、呼吸急促、抑郁、焦虑和幸福感),有营养不良风险的患者的评分显著更高(P<0.001)。所有 ESAS-r 参数与 abPG-SGA 评分呈正相关(P<0.01)。预测营养不良风险状态的最佳 ESAS-r 参数是总 ESAS-r 评分、食欲不振、疲劳和幸福感(曲线下面积分别为 0.824、0.812、0.764、0.761)。食欲不振评分≥1 的灵敏度为 77.4%,特异性为 77.0%。将食欲不振评分≥1 与总 ESAS 评分>14 结合使用,灵敏度为 87.9%,特异性为 62.8%。

结论

abPG-SGA 测量的营养不良风险与 ESAS-r 测量的症状严重程度评分呈正相关且显著相关。鉴于 ESAS-r 在癌症护理中的广泛应用,利用特定的 ESAS-r 截止值来触发营养不良筛查可能是识别有营养不良风险的癌症患者的一种可行方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232d/11245459/6f3a2eaf4fe6/41687_2024_750_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验