Li Yanling, Oravecz Zita, Ji Linying, Chow Sy-Miin
Human Development and Family Studies, The Pennsylvania State University, University Park, PA, USA.
Department of Psychology, Montana State University, Bozeman, MT, USA.
Multivariate Behav Res. 2025 Jan-Feb;60(1):61-89. doi: 10.1080/00273171.2024.2371816. Epub 2024 Jul 12.
Missingness in intensive longitudinal data triggered by latent factors constitute one type of nonignorable missingness that can generate simultaneous missingness across multiple items on each measurement occasion. To address this issue, we propose a multiple imputation (MI) strategy called MI-FS, which incorporates factor scores, lag/lead variables, and missing data indicators into the imputation model. In the context of process factor analysis (PFA), we conducted a Monte Carlo simulation study to compare the performance of MI-FS to listwise deletion (LD), MI with manifest variables (MI-MV, which implements MI on both dependent variables and covariates), and partial MI with MVs (PMI-MV, which implements MI on covariates and handles missing dependent variables full-information maximum likelihood) under different conditions. Across conditions, we found MI-based methods overall outperformed the LD; the MI-FS approach yielded lower root mean square errors (RMSEs) and higher coverage rates for auto-regression (AR) parameters compared to MI-MV; and the PMI-MV and MI-MV approaches yielded higher coverage rates for most parameters except AR parameters compared to MI-FS. These approaches were also compared using an empirical example investigating the relationships between negative affect and perceived stress over time. Recommendations on when and how to incorporate factor scores into MI processes were discussed.
由潜在因素引发的密集纵向数据中的缺失构成了一种不可忽视的缺失类型,它可能在每次测量时导致多个项目同时出现缺失。为了解决这个问题,我们提出了一种称为MI-FS的多重填补(MI)策略,该策略将因子得分、滞后/超前变量和缺失数据指标纳入填补模型。在过程因子分析(PFA)的背景下,我们进行了一项蒙特卡罗模拟研究,以比较MI-FS与逐行删除(LD)、带有显变量的MI(MI-MV,它对因变量和协变量都进行MI)以及带有MV的部分MI(PMI-MV,它对协变量进行MI并使用全信息最大似然法处理缺失的因变量)在不同条件下的性能。在各种条件下,我们发现基于MI的方法总体上优于LD;与MI-MV相比,MI-FS方法产生的均方根误差(RMSE)更低,自回归(AR)参数的覆盖率更高;与MI-FS相比,PMI-MV和MI-MV方法在除AR参数外的大多数参数上产生的覆盖率更高。还使用一个实证例子比较了这些方法,该例子研究了随着时间推移负面影响与感知压力之间的关系。讨论了关于何时以及如何将因子得分纳入MI过程的建议。