Suppr超能文献

细菌重编程蜱的代谢影响其媒介适应性和易感性感染。

Bacterial reprogramming of tick metabolism impacts vector fitness and susceptibility to infection.

机构信息

Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA.

Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

Nat Microbiol. 2024 Sep;9(9):2278-2291. doi: 10.1038/s41564-024-01756-0. Epub 2024 Jul 12.

Abstract

Arthropod-borne pathogens are responsible for hundreds of millions of infections in humans each year. The blacklegged tick, Ixodes scapularis, is the predominant arthropod vector in the United States and is responsible for transmitting several human pathogens, including the Lyme disease spirochete Borrelia burgdorferi and the obligate intracellular rickettsial bacterium Anaplasma phagocytophilum, which causes human granulocytic anaplasmosis. However, tick metabolic response to microbes and whether metabolite allocation occurs upon infection remain unknown. Here we investigated metabolic reprogramming in the tick ectoparasite I. scapularis and determined that the rickettsial bacterium A. phagocytophilum and the spirochete B. burgdorferi induced glycolysis in tick cells. Surprisingly, the endosymbiont Rickettsia buchneri had a minimal effect on bioenergetics. An unbiased metabolomics approach following A. phagocytophilum infection of tick cells showed alterations in carbohydrate, lipid, nucleotide and protein metabolism, including elevated levels of the pleiotropic metabolite β-aminoisobutyric acid. We manipulated the expression of genes associated with β-aminoisobutyric acid metabolism in I. scapularis, resulting in feeding impairment, diminished survival and reduced bacterial acquisition post haematophagy. Collectively, we discovered that metabolic reprogramming affects interspecies relationships and fitness in the clinically relevant tick I. scapularis.

摘要

节肢动物传播的病原体每年导致数亿人感染。黑腿蜱,Ixodes scapularis,是美国主要的节肢动物载体,负责传播几种人类病原体,包括莱姆病螺旋体Borrelia burgdorferi 和专性细胞内立克次体细菌Anaplasma phagocytophilum,后者导致人类粒细胞无形体病。然而,蜱对微生物的代谢反应以及感染时是否发生代谢产物分配仍然未知。在这里,我们研究了节肢动物寄生虫 I. scapularis 的代谢重编程,并确定了立克次体细菌 A. phagocytophilum 和螺旋体 B. burgdorferi 诱导了蜱细胞的糖酵解。令人惊讶的是,共生菌 Rickettsia buchneri 对生物能量几乎没有影响。对蜱细胞感染 A. phagocytophilum 后的非靶向代谢组学方法表明,碳水化合物、脂质、核苷酸和蛋白质代谢发生改变,包括多效代谢物β-氨基异丁酸水平升高。我们操纵了与 I. scapularis 中 β-氨基异丁酸代谢相关的基因的表达,导致摄食受损、存活减少和吸血后细菌获取减少。总的来说,我们发现代谢重编程会影响临床相关蜱 I. scapularis 中的种间关系和适应性。

相似文献

引用本文的文献

3
Decoding arthropod vector immunology through bona fide pathogens.通过真正的病原体解码节肢动物媒介免疫学。
Trends Parasitol. 2025 May;41(5):351-360. doi: 10.1016/j.pt.2025.03.004. Epub 2025 Mar 25.
7
Bacteria induce metabolic perturbations in ticks.细菌会引发蜱虫的代谢紊乱。
Nat Microbiol. 2024 Sep;9(9):2206-2207. doi: 10.1038/s41564-024-01787-7.

本文引用的文献

8
Immunometabolic crosstalk during bacterial infection.细菌感染期间的免疫代谢串扰。
Nat Microbiol. 2022 Apr;7(4):497-507. doi: 10.1038/s41564-022-01080-5. Epub 2022 Apr 1.
9
Lyme arthritis: linking infection, inflammation and autoimmunity.莱姆关节炎:感染、炎症与自身免疫的关联。
Nat Rev Rheumatol. 2021 Aug;17(8):449-461. doi: 10.1038/s41584-021-00648-5. Epub 2021 Jul 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验