Suppr超能文献

GPCRLigNet:使用机器学习快速筛选 GPCR 活性配体。

GPCRLigNet: rapid screening for GPCR active ligands using machine learning.

机构信息

Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA.

Department of Industrial and Physical Pharmacy, Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA.

出版信息

J Comput Aided Mol Des. 2023 Mar;37(3):147-156. doi: 10.1007/s10822-023-00497-2. Epub 2023 Feb 25.

Abstract

Molecules with bioactivity towards G protein-coupled receptors represent a subset of the vast space of small drug-like molecules. Here, we compare machine learning models, including dilated graph convolutional networks, that conduct binary classification to quickly identify molecules with activity towards G protein-coupled receptors. The models are trained and validated using a large set of over 600,000 active, inactive, and decoy compounds. The best performing machine learning model, dubbed GPCRLigNet, was a surprisingly simple feedforward dense neural network mapping from Morgan fingerprints to activity. Incorporation of GPCRLigNet into a high-throughput virtual screening workflow is demonstrated with molecular docking towards a particular G protein-coupled receptor, the pituitary adenylate cyclase-activating polypeptide receptor type 1. Through rigorous comparison of docking scores for molecules selected with and without using GPCRLigNet, we demonstrate an enrichment of potentially potent molecules using GPCRLigNet. This work provides a proof of principle that GPCRLigNet can effectively hone the chemical search space towards ligands with G protein-coupled receptor activity.

摘要

具有针对 G 蛋白偶联受体的生物活性的分子代表了大量类似药物小分子的一个子集。在这里,我们比较了机器学习模型,包括扩张图卷积网络,它们进行二进制分类,以快速识别针对 G 蛋白偶联受体具有活性的分子。该模型使用超过 60 万个活性、非活性和诱饵化合物的大型数据集进行训练和验证。表现最好的机器学习模型被称为 GPCRLigNet,它是一种从 Morgan 指纹映射到活性的简单前馈密集神经网络。通过将 GPCRLigNet 纳入针对特定 G 蛋白偶联受体——垂体腺苷酸环化酶激活多肽受体 1 的高通量虚拟筛选工作流程,证明了这一点。通过对使用和不使用 GPCRLigNet 选择的分子的对接评分进行严格比较,我们证明了使用 GPCRLigNet 可以富集潜在有效的分子。这项工作提供了一个原理证明,即 GPCRLigNet 可以有效地针对具有 G 蛋白偶联受体活性的配体优化化学搜索空间。

相似文献

1
GPCRLigNet: rapid screening for GPCR active ligands using machine learning.GPCRLigNet:使用机器学习快速筛选 GPCR 活性配体。
J Comput Aided Mol Des. 2023 Mar;37(3):147-156. doi: 10.1007/s10822-023-00497-2. Epub 2023 Feb 25.
7
Docking Finds GPCR Ligands in Dark Chemical Matter.对接发现 GPCR 配体在黑暗的化学物质中。
J Med Chem. 2020 Jan 23;63(2):613-620. doi: 10.1021/acs.jmedchem.9b01560. Epub 2020 Jan 13.
9
Automated discovery of GPCR bioactive ligands.GPCR 生物活性配体的自动发现。
Curr Opin Struct Biol. 2019 Apr;55:17-24. doi: 10.1016/j.sbi.2019.02.011. Epub 2019 Mar 23.

本文引用的文献

5
Analyzing Learned Molecular Representations for Property Prediction.分析用于性质预测的学习分子表示。
J Chem Inf Model. 2019 Aug 26;59(8):3370-3388. doi: 10.1021/acs.jcim.9b00237. Epub 2019 Aug 13.
6
Targeting the PAC1 Receptor for Neurological and Metabolic Disorders.针对神经和代谢紊乱的 PAC1 受体。
Curr Top Med Chem. 2019;19(16):1399-1417. doi: 10.2174/1568026619666190709092647.
7
Prediction of GPCR-Ligand Binding Using Machine Learning Algorithms.使用机器学习算法预测GPCR-配体结合
Comput Math Methods Med. 2018 Jan 30;2018:6565241. doi: 10.1155/2018/6565241. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验