Suppr超能文献

一种用于分类 G 蛋白偶联受体为激动剂或拮抗剂的机器学习模型。

A machine learning model for classifying G-protein-coupled receptors as agonists or antagonists.

机构信息

School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.

Department of Multimedia, Chonnam National University, Yeosu, 59626, Republic of Korea.

出版信息

BMC Bioinformatics. 2022 Aug 18;23(Suppl 9):346. doi: 10.1186/s12859-022-04877-7.

Abstract

BACKGROUND

G-protein coupled receptors (GPCRs) sense and transmit extracellular signals into the intracellular machinery by regulating G proteins. GPCR malfunctions are associated with a variety of signaling-related diseases, including cancer and diabetes; at least a third of the marketed drugs target GPCRs. Thus, characterization of their signaling and regulatory mechanisms is crucial for the development of effective drugs.

RESULTS

In this study, we developed a machine learning model to identify GPCR agonists and antagonists. We designed two-step prediction models: the first model identified the ligands binding to GPCRs and the second model classified the ligands as agonists or antagonists. Using 990 selected subset features from 5270 molecular descriptors calculated from 4590 ligands deposited in two drug databases, our model classified non-ligands, agonists, and antagonists of GPCRs, and achieved an area under the ROC curve (AUC) of 0.795, sensitivity of 0.716, specificity of 0.744, and accuracy of 0.733. In addition, we verified that 70% (44 out of 63) of FDA-approved GPCR-targeting drugs were correctly classified into their respective groups.

CONCLUSIONS

Studies of ligand-GPCR interaction recognition are important for the characterization of drug action mechanisms. Our GPCR-ligand interaction prediction model can be employed in the pharmaceutical sciences for the efficient virtual screening of putative GPCR-binding agonists and antagonists.

摘要

背景

G 蛋白偶联受体 (GPCR) 通过调节 G 蛋白来感知和传递细胞外信号到细胞内机制。GPCR 功能障碍与多种信号相关疾病有关,包括癌症和糖尿病;至少三分之一的上市药物针对 GPCR。因此,对其信号和调节机制进行表征对于开发有效的药物至关重要。

结果

在这项研究中,我们开发了一种用于识别 GPCR 激动剂和拮抗剂的机器学习模型。我们设计了两步预测模型:第一个模型识别与 GPCR 结合的配体,第二个模型将配体分类为激动剂或拮抗剂。使用从两个药物数据库中存储的 4590 种配体中计算得出的 5270 个分子描述符中选择的 990 个子集特征,我们的模型对非配体、GPCR 激动剂和拮抗剂进行了分类,ROC 曲线下面积(AUC)为 0.795,灵敏度为 0.716,特异性为 0.744,准确性为 0.733。此外,我们验证了 70%(44/63)的 FDA 批准的 GPCR 靶向药物被正确分类到各自的组别中。

结论

研究配体-GPCR 相互作用识别对于药物作用机制的表征很重要。我们的 GPCR-配体相互作用预测模型可用于药物科学领域,以有效筛选潜在的 GPCR 结合激动剂和拮抗剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd45/9389651/1ad5867585ff/12859_2022_4877_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验