Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing 210095, China.
Int J Mol Sci. 2024 Jun 26;25(13):6993. doi: 10.3390/ijms25136993.
Copper (Cu) is an essential nutrient for plant growth and development. This metal serves as a constituent element or enzyme cofactor that participates in many biochemical pathways and plays a key role in photosynthesis, respiration, ethylene sensing, and antioxidant systems. The physiological significance of Cu uptake and compartmentalization in plants has been underestimated, despite the importance of Cu in cellular metabolic processes. As a micronutrient, Cu has low cellular requirements in plants. However, its bioavailability may be significantly reduced in alkaline or organic matter-rich soils. Cu deficiency is a severe and widespread nutritional disorder that affects plants. In contrast, excessive levels of available Cu in soil can inhibit plant photosynthesis and induce cellular oxidative stress. This can affect plant productivity and potentially pose serious health risks to humans via bioaccumulation in the food chain. Plants have evolved mechanisms to strictly regulate Cu uptake, transport, and cellular homeostasis during long-term environmental adaptation. This review provides a comprehensive overview of the diverse functions of Cu chelators, chaperones, and transporters involved in Cu homeostasis and their regulatory mechanisms in plant responses to varying Cu availability conditions. Finally, we identified that future research needs to enhance our understanding of the mechanisms regulating Cu deficiency or stress in plants. This will pave the way for improving the Cu utilization efficiency and/or Cu tolerance of crops grown in alkaline or Cu-contaminated soils.
铜(Cu)是植物生长和发育所必需的营养元素。这种金属作为组成元素或酶辅因子参与许多生化途径,在光合作用、呼吸作用、乙烯感应和抗氧化系统中发挥关键作用。尽管 Cu 在细胞代谢过程中很重要,但植物对 Cu 吸收和区室化的生理意义一直被低估。作为一种微量元素,Cu 在植物中的细胞需求量很低。然而,在碱性或富含有机物的土壤中,其生物利用度可能会显著降低。Cu 缺乏是一种严重且广泛存在的营养障碍,会影响植物。相比之下,土壤中有效 Cu 含量过高会抑制植物的光合作用并诱导细胞氧化应激。这会影响植物的生产力,并通过食物链中的生物累积对人类健康构成严重威胁。植物已经进化出机制,在长期的环境适应过程中严格调控 Cu 的吸收、运输和细胞内稳态。本综述全面概述了参与 Cu 内稳态的 Cu 螯合剂、伴侣蛋白和转运蛋白的多种功能及其在植物响应不同 Cu 有效性条件下的调控机制。最后,我们确定未来的研究需要加强对调节植物 Cu 缺乏或胁迫机制的理解。这将为提高在碱性或 Cu 污染土壤中生长的作物的 Cu 利用效率和/或 Cu 耐受性铺平道路。