Suppr超能文献

利用深度学习从无人机遥感影像中识别稻田杂草

Identifying rice field weeds from unmanned aerial vehicle remote sensing imagery using deep learning.

作者信息

Guo Zhonghui, Cai Dongdong, Zhou Yunyi, Xu Tongyu, Yu Fenghua

机构信息

School of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, 110866, China.

National Digital Agriculture Regional Innovation Center (Northeast), Shenyang, 110866, China.

出版信息

Plant Methods. 2024 Jul 16;20(1):105. doi: 10.1186/s13007-024-01232-0.

Abstract

BACKGROUND

Rice field weed object detection can provide key information on weed species and locations for precise spraying, which is of great significance in actual agricultural production. However, facing the complex and changing real farm environments, traditional object detection methods still have difficulties in identifying small-sized, occluded and densely distributed weed instances. To address these problems, this paper proposes a multi-scale feature enhanced DETR network, named RMS-DETR. By adding multi-scale feature extraction branches on top of DETR, this model fully utilizes the information from different semantic feature layers to improve recognition capability for rice field weeds in real-world scenarios.

METHODS

Introducing multi-scale feature layers on the basis of the DETR model, we conduct a differentiated design for different semantic feature layers. The high-level semantic feature layer adopts Transformer structure to extract contextual information between barnyard grass and rice plants. The low-level semantic feature layer uses CNN structure to extract local detail features of barnyard grass. Introducing multi-scale feature layers inevitably leads to increased model computation, thus lowering model inference speed. Therefore, we employ a new type of Pconv (Partial convolution) to replace traditional standard convolutions in the model.

RESULTS

Compared to the original DETR model, our proposed RMS-DETR model achieved an average recognition accuracy improvement of 3.6% and 4.4% on our constructed rice field weeds dataset and the DOTA public dataset, respectively. The average recognition accuracies reached 0.792 and 0.851, respectively. The RMS-DETR model size is 40.8 M with inference time of 0.0081 s. Compared with three classical DETR models (Deformable DETR, Anchor DETR and DAB-DETR), the RMS-DETR model respectively improved average precision by 2.1%, 4.9% and 2.4%.

DISCUSSION

This model is capable of accurately identifying rice field weeds in complex real-world scenarios, thus providing key technical support for precision spraying and management of variable-rate spraying systems.

摘要

背景

稻田杂草目标检测可为精确喷洒提供杂草种类和位置的关键信息,这在实际农业生产中具有重要意义。然而,面对复杂多变的真实农田环境,传统目标检测方法在识别小型、被遮挡和密集分布的杂草实例时仍存在困难。为解决这些问题,本文提出了一种多尺度特征增强的DETR网络,名为RMS-DETR。通过在DETR之上添加多尺度特征提取分支,该模型充分利用来自不同语义特征层的信息,以提高在实际场景中对稻田杂草的识别能力。

方法

在DETR模型的基础上引入多尺度特征层,我们对不同语义特征层进行了差异化设计。高层语义特征层采用Transformer结构来提取稗草和水稻植株之间的上下文信息。低层语义特征层使用CNN结构来提取稗草的局部细节特征。引入多尺度特征层不可避免地会导致模型计算量增加,从而降低模型推理速度。因此,我们采用一种新型的Pconv(部分卷积)来替换模型中的传统标准卷积。

结果

与原始DETR模型相比,我们提出的RMS-DETR模型在我们构建的稻田杂草数据集和DOTA公共数据集上的平均识别准确率分别提高了3.6%和4.4%。平均识别准确率分别达到了0.792和0.851。RMS-DETR模型大小为40.8M,推理时间为0.0081s。与三个经典的DETR模型(可变形DETR、锚定DETR和DAB-DETR)相比,RMS-DETR模型的平均精度分别提高了2.1%、4.9%和2.4%。

讨论

该模型能够在复杂的实际场景中准确识别稻田杂草,从而为精确喷洒和变量喷洒系统的管理提供关键技术支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcbf/11253438/8c681890acff/13007_2024_1232_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验