Xin Diye, Li Tianqi
East China University of Science and Technology, School of Information Science and Engineering, Shanghai, China.
East China University of Science and Technology, School of Biotechnology, Shanghai, China.
Front Plant Sci. 2024 Sep 16;15:1409544. doi: 10.3389/fpls.2024.1409544. eCollection 2024.
In the current agricultural landscape, a significant portion of tomato plants suffer from leaf diseases, posing a major challenge to manual detection due to the task's extensive scope. Existing detection algorithms struggle to balance speed with accuracy, especially when identifying small-scale leaf diseases across diverse settings. Addressing this need, this study presents FCHF-DETR (Faster-Cascaded-attention-High-feature-fusion-Focaler Detection-Transformer), an innovative, high-precision, and lightweight detection algorithm based on RT-DETR-R18 (Real-Time-Detection-Transformer-ResNet18). The algorithm was developed using a carefully curated dataset of 3147 RGB images, showcasing tomato leaf diseases across a range of scenes and resolutions. FasterNet replaces ResNet18 in the algorithm's backbone network, aimed at reducing the model's size and improving memory efficiency. Additionally, replacing the conventional AIFI (Attention-based Intra-scale Feature Interaction) module with Cascaded Group Attention and the original CCFM (CNN-based Cross-scale Feature-fusion Module) module with HSFPN (High-Level Screening-feature Fusion Pyramid Networks) in the Efficient Hybrid Encoder significantly enhanced detection accuracy without greatly affecting efficiency. To tackle the challenge of identifying challenging samples, the Focaler-CIoU loss function was incorporated, refining the model's performance throughout the dataset. Empirical results show that FCHF-DETR achieved 96.4% Precision, 96.7% Recall, 89.1% mAP (Mean Average Precision) 50-95 and 97.2% mAP50 on the test set, with a reduction of 9.2G in FLOPs (floating point of operations) and 3.6M in parameters. These findings clearly demonstrate that the proposed method improves detection accuracy and reduces computational complexity, addressing the dual challenges of precision and efficiency in tomato leaf disease detection.
在当前的农业环境中,很大一部分番茄植株患有叶部病害,由于这项任务范围广泛,给人工检测带来了重大挑战。现有的检测算法难以在速度和准确性之间取得平衡,尤其是在识别不同环境下的小规模叶部病害时。为满足这一需求,本研究提出了FCHF-DETR(更快级联注意力-高特征融合-聚焦器检测-Transformer),这是一种基于RT-DETR-R18(实时检测-Transformer-ResNet18)的创新、高精度且轻量级的检测算法。该算法是使用精心策划的包含3147张RGB图像的数据集开发的,展示了一系列场景和分辨率下的番茄叶部病害。FasterNet取代了算法骨干网络中的ResNet18,旨在减小模型大小并提高内存效率。此外,在高效混合编码器中用级联组注意力替换传统的基于注意力的尺度内特征交互(AIFI)模块,并用高级筛选特征融合金字塔网络(HSFPN)替换原始的基于卷积神经网络的跨尺度特征融合(CCFM)模块,在不显著影响效率的情况下显著提高了检测精度。为应对识别具有挑战性样本的挑战,引入了聚焦器-CIoU损失函数,在整个数据集中优化了模型性能。实证结果表明,FCHF-DETR在测试集上的精度达到96.4%,召回率达到96.7%,50-95的平均精度均值(mAP)为89.1%,mAP50为97.2%,运算量(FLOPs)减少了9.2G,参数减少了360万。这些发现清楚地表明,所提出的方法提高了检测精度并降低了计算复杂度,解决了番茄叶部病害检测中精度和效率的双重挑战。