Suppr超能文献

多中心直肠 MRI 数据的变异来源及其对放射组学特征可重复性的影响。

Sources of variation in multicenter rectal MRI data and their effect on radiomics feature reproducibility.

机构信息

Department of Radiology, The Netherlands Cancer Institute, POB 90203, 1006 BE, Amsterdam, The Netherlands.

GROW School for Oncology & Developmental Biology, University of Maastricht, Maastricht, The Netherlands.

出版信息

Eur Radiol. 2022 Mar;32(3):1506-1516. doi: 10.1007/s00330-021-08251-8. Epub 2021 Oct 16.

Abstract

OBJECTIVES

To investigate sources of variation in a multicenter rectal cancer MRI dataset focusing on hardware and image acquisition, segmentation methodology, and radiomics feature extraction software.

METHODS

T2W and DWI/ADC MRIs from 649 rectal cancer patients were retrospectively acquired in 9 centers. Fifty-two imaging features (14 first-order/6 shape/32 higher-order) were extracted from each scan using whole-volume (expert/non-expert) and single-slice segmentations using two different software packages (PyRadiomics/CapTk). Influence of hardware, acquisition, and patient-intrinsic factors (age/gender/cTN-stage) on ADC was assessed using linear regression. Feature reproducibility was assessed between segmentation methods and software packages using the intraclass correlation coefficient.

RESULTS

Image features differed significantly (p < 0.001) between centers with more substantial variations in ADC compared to T2W-MRI. In total, 64.3% of the variation in mean ADC was explained by differences in hardware and acquisition, compared to 0.4% by patient-intrinsic factors. Feature reproducibility between expert and non-expert segmentations was good to excellent (median ICC 0.89-0.90). Reproducibility for single-slice versus whole-volume segmentations was substantially poorer (median ICC 0.40-0.58). Between software packages, reproducibility was good to excellent (median ICC 0.99) for most features (first-order/shape/GLCM/GLRLM) but poor for higher-order (GLSZM/NGTDM) features (median ICC 0.00-0.41).

CONCLUSIONS

Significant variations are present in multicenter MRI data, particularly related to differences in hardware and acquisition, which will likely negatively influence subsequent analysis if not corrected for. Segmentation variations had a minor impact when using whole volume segmentations. Between software packages, higher-order features were less reproducible and caution is warranted when implementing these in prediction models.

KEY POINTS

• Features derived from T2W-MRI and in particular ADC differ significantly between centers when performing multicenter data analysis. • Variations in ADC are mainly (> 60%) caused by hardware and image acquisition differences and less so (< 1%) by patient- or tumor-intrinsic variations. • Features derived using different image segmentations (expert/non-expert) were reproducible, provided that whole-volume segmentations were used. When using different feature extraction software packages with similar settings, higher-order features were less reproducible.

摘要

目的

研究多中心直肠癌 MRI 数据集的变异性来源,重点关注硬件和图像采集、分割方法以及放射组学特征提取软件。

方法

回顾性收集了 9 个中心的 649 例直肠癌患者的 T2W 和 DWI/ADC MRI。使用全容积(专家/非专家)和单切片分割,使用两种不同的软件包(PyRadiomics/CapTk)从每个扫描中提取了 52 个影像特征(14 个一阶/6 个形状/32 个高阶)。使用线性回归评估硬件、采集和患者内在因素(年龄/性别/cTN 分期)对 ADC 的影响。使用组内相关系数评估分割方法和软件包之间的特征可重复性。

结果

图像特征在中心之间存在显著差异(p<0.001),ADC 差异大于 T2W-MRI。总体而言,平均 ADC 变异的 64.3%可归因于硬件和采集的差异,而只有 0.4%可归因于患者内在因素。专家和非专家分割之间的特征可重复性为良好至极好(中位数 ICC 0.89-0.90)。单切片与全容积分割之间的可重复性要差得多(中位数 ICC 0.40-0.58)。在软件包之间,大多数特征(一阶/形状/GLCM/GLRLM)的可重复性良好至极好(中位数 ICC 0.99),但高阶特征(GLSZM/NGTDM)的可重复性较差(中位数 ICC 0.00-0.41)。

结论

多中心 MRI 数据存在显著差异,特别是与硬件和采集差异有关,这可能会对后续分析产生负面影响,除非进行校正。使用全容积分割时,分割差异的影响较小。在软件包之间,高阶特征的可重复性较差,在预测模型中使用时需要谨慎。

重点

• 在进行多中心数据分析时,T2W-MRI 得出的特征,特别是 ADC,在中心之间存在显著差异。• ADC 的变化主要(>60%)由硬件和图像采集差异引起,而较少(<1%)由患者或肿瘤内在差异引起。• 使用不同的图像分割(专家/非专家)得出的特征具有可重复性,前提是使用全容积分割。当使用具有相似设置的不同特征提取软件包时,高阶特征的可重复性较差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/8831294/c333dbb35f7b/330_2021_8251_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验