Suppr超能文献

具有图像衍生注释的潜在扩散模型用于增强组织病理学中的人工智能辅助癌症诊断

Latent Diffusion Models with Image-Derived Annotations for Enhanced AI-Assisted Cancer Diagnosis in Histopathology.

作者信息

Osorio Pedro, Jimenez-Perez Guillermo, Montalt-Tordera Javier, Hooge Jens, Duran-Ballester Guillem, Singh Shivam, Radbruch Moritz, Bach Ute, Schroeder Sabrina, Siudak Krystyna, Vienenkoetter Julia, Lawrenz Bettina, Mohammadi Sadegh

机构信息

Decision Science & Advanced Analytics, Bayer AG, 13353 Berlin, Germany.

Pathology and Clinical Pathology, Bayer AG, 13353 Berlin, Germany.

出版信息

Diagnostics (Basel). 2024 Jul 5;14(13):1442. doi: 10.3390/diagnostics14131442.

Abstract

Artificial Intelligence (AI)-based image analysis has immense potential to support diagnostic histopathology, including cancer diagnostics. However, developing supervised AI methods requires large-scale annotated datasets. A potentially powerful solution is to augment training data with synthetic data. Latent diffusion models, which can generate high-quality, diverse synthetic images, are promising. However, the most common implementations rely on detailed textual descriptions, which are not generally available in this domain. This work proposes a method that constructs structured textual prompts from automatically extracted image features. We experiment with the PCam dataset, composed of tissue patches only loosely annotated as healthy or cancerous. We show that including image-derived features in the prompt, as opposed to only healthy and cancerous labels, improves the Fréchet Inception Distance (FID) by 88.6. We also show that pathologists find it challenging to detect synthetic images, with a median sensitivity/specificity of 0.55/0.55. Finally, we show that synthetic data effectively train AI models.

摘要

基于人工智能(AI)的图像分析在支持诊断组织病理学(包括癌症诊断)方面具有巨大潜力。然而,开发有监督的AI方法需要大规模的带注释数据集。一个潜在的强大解决方案是用合成数据增强训练数据。能够生成高质量、多样化合成图像的潜在扩散模型很有前景。然而,最常见的实现方式依赖于详细的文本描述,而在这个领域通常无法获得这些描述。这项工作提出了一种从自动提取的图像特征构建结构化文本提示的方法。我们使用PCam数据集进行实验,该数据集由仅粗略标注为健康或癌性的组织切片组成。我们表明,与仅使用健康和癌性标签相比,在提示中包含图像衍生特征可将弗雷歇因距离(FID)提高88.6。我们还表明,病理学家发现检测合成图像具有挑战性,中位灵敏度/特异性为0.55/0.55。最后,我们表明合成数据能有效训练AI模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbb/11241396/37caffdd76fc/diagnostics-14-01442-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验