Suppr超能文献

用于在组织学图像中利用旋转对称性的密集可转向滤波器卷积神经网络。

Dense Steerable Filter CNNs for Exploiting Rotational Symmetry in Histology Images.

出版信息

IEEE Trans Med Imaging. 2020 Dec;39(12):4124-4136. doi: 10.1109/TMI.2020.3013246. Epub 2020 Nov 30.

Abstract

Histology images are inherently symmetric under rotation, where each orientation is equally as likely to appear. However, this rotational symmetry is not widely utilised as prior knowledge in modern Convolutional Neural Networks (CNNs), resulting in data hungry models that learn independent features at each orientation. Allowing CNNs to be rotation-equivariant removes the necessity to learn this set of transformations from the data and instead frees up model capacity, allowing more discriminative features to be learned. This reduction in the number of required parameters also reduces the risk of overfitting. In this paper, we propose Dense Steerable Filter CNNs (DSF-CNNs) that use group convolutions with multiple rotated copies of each filter in a densely connected framework. Each filter is defined as a linear combination of steerable basis filters, enabling exact rotation and decreasing the number of trainable parameters compared to standard filters. We also provide the first in-depth comparison of different rotation-equivariant CNNs for histology image analysis and demonstrate the advantage of encoding rotational symmetry into modern architectures. We show that DSF-CNNs achieve state-of-the-art performance, with significantly fewer parameters, when applied to three different tasks in the area of computational pathology: breast tumour classification, colon gland segmentation and multi-tissue nuclear segmentation.

摘要

组织学图像在旋转下具有内在的对称性,每个方向出现的概率相等。然而,这种旋转对称性在现代卷积神经网络(CNN)中并没有被广泛用作先验知识,导致数据饥饿的模型在每个方向上学习独立的特征。允许 CNN 具有旋转不变性,可以避免从数据中学习这组变换,从而释放模型容量,允许学习更具判别力的特征。这种所需参数数量的减少也降低了过拟合的风险。在本文中,我们提出了密集可转向滤波器卷积神经网络(DSF-CNN),它在密集连接的框架中使用具有多个旋转副本的组卷积。每个滤波器都被定义为可转向基础滤波器的线性组合,与标准滤波器相比,这可以实现精确的旋转并减少可训练参数的数量。我们还首次对用于组织学图像分析的不同旋转不变 CNN 进行了深入比较,并证明了将旋转对称性编码到现代架构中的优势。我们表明,当应用于计算病理学领域的三个不同任务(乳腺肿瘤分类、结肠腺体分割和多组织核分割)时,DSF-CNN 具有出色的性能,参数数量显著减少。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验