Suppr超能文献

受月经周期启发的潜在扩散模型在能源生产图像增强中的应用

Menstrual cycle inspired latent diffusion model for image augmentation in energy production.

作者信息

Mahmoud Gamal M, Elbaz Mostafa, Said Wael, Elsonbaty Amira A

机构信息

Department of Electrical Engineering, Pharos University in Alexandria, Alexandria, Egypt.

Department of Computer Science, Faculty of Computers and Informatics, Kafrelsheikh University, Kafrelsheikh, Egypt.

出版信息

Sci Rep. 2025 May 14;15(1):16749. doi: 10.1038/s41598-025-99088-4.

Abstract

In the energy production domain, image classification is critical for monitoring, diagnostics, and operational optimization tasks. Latent diffusion models (LDMs) have shown potential in generating diverse images during the augmentation process based on text input. However, they are hindered by pixel integrity, texture consistency, and mode collapse. This paper introduces menstrual cycle-inspired latent diffusion model (MCI-LDM), a novel framework that addresses these challenges with three key modifications. First, a menstrual cycle-inspired metaheuristic algorithm is integrated to improve generated images' pixel integrity and structural coherence. Second, an adaptive attention mechanism is employed to dynamically focus on critical regions during image generation, ensuring that fine details are preserved. Third, a multi-scale feature enhancement module is incorporated to capture global structures and local textures, mitigating mode collapse and enhancing overall image quality. Extensive experiments were conducted on five energy-related datasets, demonstrating the superior performance of MCI-LDM in terms of image augmentation, diversity, and generation accuracy. The results highlight the efficiency of the proposed model, making it a valuable tool for improving image classification and data augmentation in energy sector applications. MCI-LDM outperforms LDM by generating more diverse images, with a higher Inception Score (7.1 vs. 5.4) and a lower Fréchet Inception Distance (22.5 vs. 35.2), indicating better quality and variation. Additionally, MCI-LDM preserves image integrity more effectively, achieving superior PSNR (32.7 dB vs. 28.5 dB) and SSIM (0.92 vs. 0.78).

摘要

在能源生产领域,图像分类对于监测、诊断和运营优化任务至关重要。潜在扩散模型(LDMs)在基于文本输入的增强过程中生成多样化图像方面已显示出潜力。然而,它们受到像素完整性、纹理一致性和模式坍缩的阻碍。本文介绍了受月经周期启发的潜在扩散模型(MCI-LDM),这是一个通过三项关键修改来应对这些挑战的新颖框架。首先,集成了一种受月经周期启发的元启发式算法,以提高生成图像的像素完整性和结构连贯性。其次,采用自适应注意力机制在图像生成过程中动态聚焦于关键区域,确保保留精细细节。第三,并入一个多尺度特征增强模块以捕获全局结构和局部纹理,减轻模式坍缩并提高整体图像质量。在五个与能源相关的数据集上进行了广泛实验,证明了MCI-LDM在图像增强、多样性和生成准确性方面的卓越性能。结果突出了所提出模型的效率,使其成为改善能源领域应用中图像分类和数据增强的宝贵工具。MCI-LDM通过生成更多样化的图像表现优于LDM,具有更高的Inception分数(7.1对5.4)和更低的Fréchet Inception距离(22.5对35.2),表明质量和变化更好。此外,MCI-LDM更有效地保留图像完整性,实现了更高的峰值信噪比(32.7 dB对28.5 dB)和结构相似性指数(0.92对0.78)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6025/12078585/fb3ffb5077ac/41598_2025_99088_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验