Suppr超能文献

视觉肿瘤内异质性与乳腺肿瘤进展

Visual Intratumor Heterogeneity and Breast Tumor Progression.

作者信息

Li Yao, Van Alsten Sarah C, Lee Dong Neuck, Kim Taebin, Calhoun Benjamin C, Perou Charles M, Wobker Sara E, Marron J S, Hoadley Katherine A, Troester Melissa A

机构信息

Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Cancers (Basel). 2024 Jun 21;16(13):2294. doi: 10.3390/cancers16132294.

Abstract

High intratumoral heterogeneity is thought to be a poor prognostic indicator. However, the source of heterogeneity may also be important, as genomic heterogeneity is not always reflected in histologic or 'visual' heterogeneity. We aimed to develop a predictor of histologic heterogeneity and evaluate its association with outcomes and molecular heterogeneity. We used VGG16 to train an image classifier to identify unique, patient-specific visual features in 1655 breast tumors (5907 core images) from the Carolina Breast Cancer Study (CBCS). Extracted features for images, as well as the epithelial and stromal image components, were hierarchically clustered, and visual heterogeneity was defined as a greater distance between images from the same patient. We assessed the association between visual heterogeneity, clinical features, and DNA-based molecular heterogeneity using generalized linear models, and we used Cox models to estimate the association between visual heterogeneity and tumor recurrence. Basal-like and ER-negative tumors were more likely to have low visual heterogeneity, as were the tumors from younger and Black women. Less heterogeneous tumors had a higher risk of recurrence (hazard ratio = 1.62, 95% confidence interval = 1.22-2.16), and were more likely to come from patients whose tumors were comprised of only one subclone or had a TP53 mutation. Associations were similar regardless of whether the image was based on stroma, epithelium, or both. Histologic heterogeneity adds complementary information to commonly used molecular indicators, with low heterogeneity predicting worse outcomes. Future work integrating multiple sources of heterogeneity may provide a more comprehensive understanding of tumor progression.

摘要

肿瘤内高度异质性被认为是一个不良预后指标。然而,异质性的来源可能也很重要,因为基因组异质性并不总是反映在组织学或“视觉”异质性上。我们旨在开发一种组织学异质性预测指标,并评估其与预后及分子异质性的关联。我们使用VGG16训练一个图像分类器,以识别来自卡罗来纳乳腺癌研究(CBCS)的1655例乳腺肿瘤(5907张核心图像)中独特的、患者特异性的视觉特征。对图像以及上皮和基质图像成分提取的特征进行层次聚类,视觉异质性被定义为同一患者图像之间的更大距离。我们使用广义线性模型评估视觉异质性、临床特征与基于DNA的分子异质性之间的关联,并使用Cox模型估计视觉异质性与肿瘤复发之间的关联。基底样和雌激素受体阴性肿瘤更有可能具有低视觉异质性,年轻女性和黑人女性的肿瘤也是如此。异质性较低的肿瘤复发风险较高(风险比=1.62,95%置信区间=1.22 - 2.16),并且更有可能来自肿瘤仅由一个亚克隆组成或具有TP53突变的患者。无论图像是基于基质、上皮还是两者,关联都是相似的。组织学异质性为常用的分子指标增添了补充信息,低异质性预示着更差的预后。整合多种异质性来源的未来工作可能会提供对肿瘤进展更全面的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72a0/11240824/78f8f462aa9d/cancers-16-02294-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验