Suppr超能文献

基于图像分析的高危雌激素受体阳性、人表皮生长因子受体2阴性乳腺癌的识别

Image analysis-based identification of high risk ER-positive, HER2-negative breast cancers.

作者信息

Lee Dong Neuck, Li Yao, Olsson Linnea T, Hamilton Alina M, Calhoun Benjamin C, Hoadley Katherine A, Marron J S, Troester Melissa A

机构信息

Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA.

Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC, USA.

出版信息

Breast Cancer Res. 2024 Dec 4;26(1):177. doi: 10.1186/s13058-024-01915-5.

Abstract

BACKGROUND

Breast cancer subtypes Luminal A and Luminal B are classified by the expression of PAM50 genes and may benefit from different treatment strategies. Machine learning models based on H&E images may contain features associated with subtype, allowing early identification of tumors with higher risk of recurrence.

METHODS

H&E images (n = 630 ER+/HER2-breast cancers) were pixel-level segmented into epithelium and stroma. Convolutional neural network and multiple instance learning were used to extract image features from original and segmented images. Patient-level classification models were trained to discriminate Luminal A versus B image features in tenfold cross-validation, with or without grade adjustment. The best-performing visual classifier was incorporated into envisioned diagnostic protocols as an alternative to genomic testing (PAM50). The protocols were then compared in time-to-recurrence models.

RESULTS

Among ER+/HER2-tumors, the image-based protocol differentiated recurrence times with a hazard ratio (HR) of 2.81 (95% CI: 1.73-4.56), which was similar to the HR for PAM50 (2.66, 95% CI: 1.65-4.28). Grade adjustment did not improve subtype prediction accuracy, but did help balance sensitivity and specificity. Among high grade participants, sensitivity and specificity (0.734 and 0.474, respectively) became more similar (0.732 and 0.624, respectively) in grade-adjusted models. The original and epithelium-specific images had similar performance and highest accuracy, followed by stroma or binarized images showing only the epithelial-stromal interface.

CONCLUSIONS

Given low rates of genomic testing uptake nationally, image-based methods may help identify ER+/HER2-patients who could benefit from testing.

摘要

背景

乳腺癌的腔面A型和腔面B型亚型通过PAM50基因的表达进行分类,且可能受益于不同的治疗策略。基于苏木精-伊红(H&E)图像的机器学习模型可能包含与亚型相关的特征,从而有助于早期识别复发风险较高的肿瘤。

方法

将630例雌激素受体阳性(ER+)/人表皮生长因子受体2阴性(HER2-)乳腺癌的H&E图像在像素水平上分割为上皮和基质。使用卷积神经网络和多实例学习从原始图像和分割后的图像中提取图像特征。在十折交叉验证中,训练患者水平的分类模型以区分腔面A型与腔面B型的图像特征,有或没有分级调整。将性能最佳的视觉分类器纳入设想的诊断方案中,作为基因组检测(PAM50)的替代方法。然后在复发时间模型中比较这些方案。

结果

在ER+/HER2-肿瘤中,基于图像的方案区分复发时间的风险比(HR)为2.81(95%置信区间:1.73 - 4.56),这与PAM50的HR(2.66,95%置信区间:1.65 - 4.28)相似。分级调整并未提高亚型预测准确性,但有助于平衡敏感性和特异性。在高级别参与者中,分级调整模型中的敏感性和特异性(分别为0.734和0.474)变得更加接近(分别为0.732和0.624)。原始图像和上皮特异性图像具有相似的性能和最高的准确性,其次是仅显示上皮-基质界面的基质或二值化图像。

结论

鉴于全国范围内基因组检测的采用率较低,基于图像的方法可能有助于识别可从检测中受益的ER+/HER2-患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ecc/11616316/6205a7e510d0/13058_2024_1915_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验