Bucksot Jesse, Ritchie Katherine, Biancalana Matthew, Cole John A, Cook Daniel
SimBioSys, Inc., 180 N La Salle St., Chicago, IL 60601, USA.
Cancers (Basel). 2024 Jun 22;16(13):2302. doi: 10.3390/cancers16132302.
Despite the high variability in cancer biology, cancers nevertheless exhibit cohesive hallmarks across multiple cancer types, notably dysregulated metabolism. Metabolism plays a central role in cancer biology, and shifts in metabolic pathways have been linked to tumor aggressiveness and likelihood of response to therapy. We therefore sought to interrogate metabolism across cancer types and understand how intrinsic modes of metabolism vary within and across indications and how they relate to patient prognosis. We used context specific genome-scale metabolic modeling to simulate metabolism across 10,915 patients from 34 cancer types from The Cancer Genome Atlas and the MMRF-COMMPASS study. We found that cancer metabolism clustered into modes characterized by differential glycolysis, oxidative phosphorylation, and growth rate. We also found that the simulated activities of metabolic pathways are intrinsically prognostic across cancer types, especially tumor growth rate, fatty acid biosynthesis, folate metabolism, oxidative phosphorylation, steroid metabolism, and glutathione metabolism. This work shows the prognostic power of individual patient metabolic modeling across multiple cancer types. Additionally, it shows that analyzing large-scale models of cancer metabolism with survival information provides unique insights into underlying relationships across cancer types and suggests how therapies designed for one cancer type may be repurposed for use in others.
尽管癌症生物学存在高度变异性,但癌症在多种癌症类型中仍表现出连贯的特征,尤其是代谢失调。代谢在癌症生物学中起着核心作用,代谢途径的改变与肿瘤侵袭性和对治疗的反应可能性有关。因此,我们试图探究不同癌症类型中的代谢情况,了解代谢的内在模式在不同适应症内和之间是如何变化的,以及它们与患者预后的关系。我们使用特定背景的基因组规模代谢模型,对来自癌症基因组图谱(The Cancer Genome Atlas)和MMRF-COMMPASS研究的34种癌症类型的10915名患者的代谢情况进行模拟。我们发现癌症代谢聚集成以糖酵解、氧化磷酸化和生长速率差异为特征的模式。我们还发现,代谢途径的模拟活性在不同癌症类型中具有内在的预后价值,尤其是肿瘤生长速率、脂肪酸生物合成、叶酸代谢、氧化磷酸化、类固醇代谢和谷胱甘肽代谢。这项工作展示了个体患者代谢模型在多种癌症类型中的预后能力。此外,它表明利用生存信息分析大规模癌症代谢模型能够为不同癌症类型之间的潜在关系提供独特见解,并提示针对一种癌症类型设计的疗法如何可能被重新用于其他癌症类型。