Suppr超能文献

CT扫描中胰腺癌检测与定位的改进:一种利用次要特征的计算机辅助检测模型

Improved Pancreatic Cancer Detection and Localization on CT Scans: A Computer-Aided Detection Model Utilizing Secondary Features.

作者信息

Ramaekers Mark, Viviers Christiaan G A, Hellström Terese A E, Ewals Lotte J S, Tasios Nick, Jacobs Igor, Nederend Joost, Sommen Fons van der, Luyer Misha D P

机构信息

Department of Surgery, Catharina Cancer Institute, Catharina Hospital Eindhoven, EJ 5623 Eindhoven, The Netherlands.

Department of Electrical Engineering, Eindhoven University of Technology, AZ 5612 Eindhoven, The Netherlands.

出版信息

Cancers (Basel). 2024 Jun 29;16(13):2403. doi: 10.3390/cancers16132403.

Abstract

The early detection of pancreatic ductal adenocarcinoma (PDAC) is essential for optimal treatment of pancreatic cancer patients. We propose a tumor detection framework to improve the detection of pancreatic head tumors on CT scans. In this retrospective research study, CT images of 99 patients with pancreatic head cancer and 98 control cases from the Catharina Hospital Eindhoven were collected. A multi-stage 3D U-Net-based approach was used for PDAC detection including clinically significant secondary features such as pancreatic duct and common bile duct dilation. The developed algorithm was evaluated using a local test set comprising 59 CT scans. The model was externally validated in 28 pancreatic cancer cases of a publicly available medical decathlon dataset. The tumor detection framework achieved a sensitivity of 0.97 and a specificity of 1.00, with an area under the receiver operating curve (AUROC) of 0.99, in detecting pancreatic head cancer in the local test set. In the external test set, we obtained similar results, with a sensitivity of 1.00. The model provided the tumor location with acceptable accuracy obtaining a DICE Similarity Coefficient (DSC) of 0.37. This study shows that a tumor detection framework utilizing CT scans and secondary signs of pancreatic cancer can detect pancreatic tumors with high accuracy.

摘要

胰腺导管腺癌(PDAC)的早期检测对于胰腺癌患者的最佳治疗至关重要。我们提出了一种肿瘤检测框架,以改进CT扫描上胰头肿瘤的检测。在这项回顾性研究中,收集了来自埃因霍温卡塔琳娜医院的99例胰头癌患者和98例对照病例的CT图像。基于多阶段3D U-Net的方法用于PDAC检测,包括胰腺导管和胆总管扩张等具有临床意义的次要特征。使用包含59次CT扫描的本地测试集对开发的算法进行评估。该模型在公开可用的医学十项全能数据集中的28例胰腺癌病例中进行了外部验证。在本地测试集中检测胰头癌时,肿瘤检测框架的灵敏度为0.97,特异性为1.00,受试者工作特征曲线下面积(AUROC)为0.99。在外部测试集中,我们获得了类似的结果,灵敏度为1.00。该模型以可接受的准确度提供肿瘤位置,获得的骰子相似系数(DSC)为0.37。这项研究表明,利用CT扫描和胰腺癌次要征象的肿瘤检测框架可以高精度地检测胰腺肿瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e18/11240790/aec329c97026/cancers-16-02403-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验