Suppr超能文献

深度学习集成对个体 DNN 在 CT 图像器官分割中偶尔出现的灾难性故障具有鲁棒性。

Deep Ensembles Are Robust to Occasional Catastrophic Failures of Individual DNNs for Organs Segmentations in CT Images.

机构信息

Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.

出版信息

J Digit Imaging. 2023 Oct;36(5):2060-2074. doi: 10.1007/s10278-023-00857-2. Epub 2023 Jun 8.

Abstract

Deep neural networks (DNNs) have recently showed remarkable performance in various computer vision tasks, including classification and segmentation of medical images. Deep ensembles (an aggregated prediction of multiple DNNs) were shown to improve a DNN's performance in various classification tasks. Here we explore how deep ensembles perform in the image segmentation task, in particular, organ segmentations in CT (Computed Tomography) images. Ensembles of V-Nets were trained to segment multiple organs using several in-house and publicly available clinical studies. The ensembles segmentations were tested on images from a different set of studies, and the effects of ensemble size as well as other ensemble parameters were explored for various organs. Compared to single models, Deep Ensembles significantly improved the average segmentation accuracy, especially for those organs where the accuracy was lower. More importantly, Deep Ensembles strongly reduced occasional "catastrophic" segmentation failures characteristic of single models and variability of the segmentation accuracy from image to image. To quantify this we defined the "high risk images": images for which at least one model produced an outlier metric (performed in the lower 5% percentile). These images comprised about 12% of the test images across all organs. Ensembles performed without outliers for 68%-100% of the "high risk images" depending on the performance metric used.

摘要

深度神经网络(DNN)在各种计算机视觉任务中表现出了显著的性能,包括医学图像的分类和分割。深度集成(多个 DNN 的聚合预测)被证明可以提高 DNN 在各种分类任务中的性能。在这里,我们探讨了深度集成在图像分割任务中的表现,特别是在 CT(计算机断层扫描)图像中的器官分割。使用多个内部和公开的临床研究来训练 V-Net 集成以分割多个器官。将集成分割应用于来自不同研究集的图像,并探索了各种器官的集成大小和其他集成参数的影响。与单个模型相比,深度集成显著提高了平均分割准确性,特别是对于那些准确性较低的器官。更重要的是,深度集成强烈减少了单个模型特有的偶尔“灾难性”分割失败和从一张图像到另一张图像的分割准确性的变化。为了量化这一点,我们定义了“高风险图像”:至少有一个模型产生异常度量(表现为处于较低 5%百分位)的图像。这些图像占所有器官测试图像的 12%左右。根据使用的性能指标,集成在 68%-100%的“高风险图像”中没有异常。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed03/10502003/69ae7b6f0d7d/10278_2023_857_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验