The School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China.
The School of Mathematics and Statistics, Xidian University, Xi'an 710069, China.
J Healthc Eng. 2021 Jul 2;2021:3284493. doi: 10.1155/2021/3284493. eCollection 2021.
Accurate pancreas segmentation from 3D CT volumes is important for pancreas diseases therapy. It is challenging to accurately delineate the pancreas due to the poor intensity contrast and intrinsic large variations in volume, shape, and location. In this paper, we propose a semiautomated deformable U-Net, i.e., DUNet for the pancreas segmentation. The key innovation of our proposed method is a deformable convolution module, which adaptively adds learned offsets to each sampling position of 2D convolutional kernel to enhance feature representation. Combining deformable convolution module with U-Net enables our DUNet to flexibly capture pancreatic features and improve the geometric modeling capability of U-Net. Moreover, a nonlinear Dice-based loss function is designed to tackle the class-imbalanced problem in the pancreas segmentation. Experimental results show that our proposed method outperforms all comparison methods on the same NIH dataset.
从 3D CT 容积中准确分割胰腺对于胰腺疾病的治疗很重要。由于胰腺的强度对比度差,体积、形状和位置存在内在的较大变化,因此准确地描绘胰腺具有挑战性。在本文中,我们提出了一种半自动可变形 U-Net,即 DUNet,用于胰腺分割。我们提出的方法的关键创新是可变形卷积模块,它自适应地为 2D 卷积核的每个采样位置添加学习偏移量,以增强特征表示。将可变形卷积模块与 U-Net 相结合,使我们的 DUNet 能够灵活地捕获胰腺特征并提高 U-Net 的几何建模能力。此外,还设计了一种基于非线性 Dice 的损失函数来解决胰腺分割中的类不平衡问题。实验结果表明,在相同的 NIH 数据集上,我们提出的方法优于所有比较方法。