COMPutational Pharmacology and Clinical Oncology Department, Centre Inria de l'Université Côte d'Azur, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, Marseille, France.
Pharma Research and Early Development, Early Development Oncology, Roche Innovation Center Basel, Basel, Switzerland.
Clin Pharmacol Ther. 2024 Oct;116(4):1110-1120. doi: 10.1002/cpt.3371. Epub 2024 Jul 12.
Existing survival prediction models rely only on baseline or tumor kinetics data and lack machine learning integration. We introduce a novel kinetics-machine learning (kML) model that integrates baseline markers, tumor kinetics, and four on-treatment simple blood markers (albumin, C-reactive protein, lactate dehydrogenase, and neutrophils). Developed for immune-checkpoint inhibition (ICI) in non-small cell lung cancer on three phase II trials (533 patients), kML was validated on the two arms of a phase III trial (ICI and chemotherapy, 377 and 354 patients). It outperformed the current state-of-the-art for individual predictions with a test set C-index of 0.790, 12-months survival accuracy of 78.7% and hazard ratio of 25.2 (95% CI: 10.4-61.3, P < 0.0001) to identify long-term survivors. Critically, kML predicted the success of the phase III trial using only 25 weeks of on-study data (predicted HR = 0.814 (0.64-0.994) vs. final study HR = 0.778 (0.65-0.931)). Modeling on-treatment blood markers combined with predictive machine learning constitutes a valuable approach to support personalized medicine and drug development. The code is publicly available at https://gitlab.inria.fr/benzekry/nlml_onco.
现有的生存预测模型仅依赖于基线或肿瘤动力学数据,缺乏机器学习的整合。我们引入了一种新的动力学-机器学习(kML)模型,该模型整合了基线标志物、肿瘤动力学和四项治疗中简单的血液标志物(白蛋白、C 反应蛋白、乳酸脱氢酶和中性粒细胞)。该模型在三项 II 期临床试验(533 名患者)中针对免疫检查点抑制剂(ICI)进行了开发,并在一项 III 期试验的两个臂(ICI 和化疗,377 名和 354 名患者)中进行了验证。它在个体预测方面超过了当前的最新技术,测试集 C 指数为 0.790,12 个月生存率为 78.7%,危险比为 25.2(95%CI:10.4-61.3,P < 0.0001),以识别长期存活者。关键的是,kML 仅使用 25 周的研究数据就预测了 III 期试验的成功(预测 HR = 0.814(0.64-0.994)与最终研究 HR = 0.778(0.65-0.931))。对治疗中血液标志物进行建模并结合预测性机器学习是一种有价值的方法,可以支持个性化医学和药物开发。该代码可在 https://gitlab.inria.fr/benzekry/nlml_onco 上公开获取。