Atsou Kevin, Auperin Anne, Guigay Jôel, Salas Sébastien, Benzekry Sebastien
COMPutational Pharmacology and Clinical Oncology Department, Inria Sophia Antipolis - Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, Marseille, France.
Biostatistical and Epidemiological Division, Institut Gustave Roussy, Villejuif, France.
CPT Pharmacometrics Syst Pharmacol. 2025 Mar;14(3):540-550. doi: 10.1002/psp4.13294. Epub 2024 Dec 25.
We employed a mechanistic learning approach, integrating on-treatment tumor kinetics (TK) modeling with various machine learning (ML) models to address the challenge of predicting post-progression survival (PPS)-the duration from the time of documented disease progression to death-and overall survival (OS) in Head and Neck Squamous Cell Carcinoma (HNSCC). We compared the predictive power of model-derived TK parameters versus RECIST and assessed the efficacy of nine TK-OS ML models against conventional survival models. Data from 526 advanced HNSCC patients treated with chemotherapy and cetuximab in the TPExtreme trial were analyzed using a double-exponential model. TK parameters from the first line and maintenance (TKL1) or after four cycles (TK4) were used to predict PPS and post-cycle 4 OS (OS4), combined with 12 baseline parameters. While ML algorithms underperformed compared to the Cox model for PPS, a random survival forest was superior for OS prediction using TK4 and surpassed RECIST-based metrics. This model demonstrated unbiased OS4 prediction, suggesting its potential for improving HNSCC treatment evaluation. Trial Registration: ClinicalTrials.gov identifier: NCT02268695.
我们采用了一种机制性学习方法,将治疗期间肿瘤动力学(TK)建模与各种机器学习(ML)模型相结合,以应对预测头颈部鳞状细胞癌(HNSCC)进展后生存期(PPS,即从记录的疾病进展时间到死亡的持续时间)和总生存期(OS)的挑战。我们比较了模型衍生的TK参数与RECIST的预测能力,并评估了9种TK-OS ML模型相对于传统生存模型的疗效。使用双指数模型分析了TPExtreme试验中526例接受化疗和西妥昔单抗治疗的晚期HNSCC患者的数据。一线和维持治疗(TKL1)或四个周期后(TK4)的TK参数与12个基线参数相结合,用于预测PPS和第4周期后总生存期(OS4)。虽然与Cox模型相比,ML算法在PPS预测方面表现较差,但随机生存森林在使用TK4进行OS预测方面表现更优,且超过了基于RECIST的指标。该模型展示了无偏的OS4预测,表明其在改善HNSCC治疗评估方面的潜力。试验注册:ClinicalTrials.gov标识符:NCT02268695。