Suppr超能文献

用于预测头颈部鳞状细胞癌生存结果的机制学习

Mechanistic Learning for Predicting Survival Outcomes in Head and Neck Squamous Cell Carcinoma.

作者信息

Atsou Kevin, Auperin Anne, Guigay Jôel, Salas Sébastien, Benzekry Sebastien

机构信息

COMPutational Pharmacology and Clinical Oncology Department, Inria Sophia Antipolis - Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, Marseille, France.

Biostatistical and Epidemiological Division, Institut Gustave Roussy, Villejuif, France.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2025 Mar;14(3):540-550. doi: 10.1002/psp4.13294. Epub 2024 Dec 25.

Abstract

We employed a mechanistic learning approach, integrating on-treatment tumor kinetics (TK) modeling with various machine learning (ML) models to address the challenge of predicting post-progression survival (PPS)-the duration from the time of documented disease progression to death-and overall survival (OS) in Head and Neck Squamous Cell Carcinoma (HNSCC). We compared the predictive power of model-derived TK parameters versus RECIST and assessed the efficacy of nine TK-OS ML models against conventional survival models. Data from 526 advanced HNSCC patients treated with chemotherapy and cetuximab in the TPExtreme trial were analyzed using a double-exponential model. TK parameters from the first line and maintenance (TKL1) or after four cycles (TK4) were used to predict PPS and post-cycle 4 OS (OS4), combined with 12 baseline parameters. While ML algorithms underperformed compared to the Cox model for PPS, a random survival forest was superior for OS prediction using TK4 and surpassed RECIST-based metrics. This model demonstrated unbiased OS4 prediction, suggesting its potential for improving HNSCC treatment evaluation. Trial Registration: ClinicalTrials.gov identifier: NCT02268695.

摘要

我们采用了一种机制性学习方法,将治疗期间肿瘤动力学(TK)建模与各种机器学习(ML)模型相结合,以应对预测头颈部鳞状细胞癌(HNSCC)进展后生存期(PPS,即从记录的疾病进展时间到死亡的持续时间)和总生存期(OS)的挑战。我们比较了模型衍生的TK参数与RECIST的预测能力,并评估了9种TK-OS ML模型相对于传统生存模型的疗效。使用双指数模型分析了TPExtreme试验中526例接受化疗和西妥昔单抗治疗的晚期HNSCC患者的数据。一线和维持治疗(TKL1)或四个周期后(TK4)的TK参数与12个基线参数相结合,用于预测PPS和第4周期后总生存期(OS4)。虽然与Cox模型相比,ML算法在PPS预测方面表现较差,但随机生存森林在使用TK4进行OS预测方面表现更优,且超过了基于RECIST的指标。该模型展示了无偏的OS4预测,表明其在改善HNSCC治疗评估方面的潜力。试验注册:ClinicalTrials.gov标识符:NCT02268695。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5a6/11919269/5192be18757e/PSP4-14-540-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验