Goulooze Sebastiaan C, Muliaditan Morris, Franzese Richard C, Mantero Alejandro, Visser Sandra A G, Melhem Murad, Post Teun M, Rathi Chetan, Struemper Herbert
LAP&P Consultants, Leiden, the Netherlands.
Clinical Pharmacology Modeling & Simulation, GSK, Upper Providence, Pennsylvania, USA.
CPT Pharmacometrics Syst Pharmacol. 2025 Apr;14(4):640-650. doi: 10.1002/psp4.70003. Epub 2025 Feb 21.
The gold standard for regulatory approval in oncology is overall survival (OS). Because OS data are initially limited, early drug development decisions are often based on early efficacy endpoints, such as objective response rate and progression-free survival. Tumor size (TS)-OS models provide a framework to support decision-making on potential late-stage success based on early readouts, through leveraging TS data with limited follow-up and treatment-agnostic TS-OS link functions, to predict longer-term OS. Conditional simulations (also known as Bayesian forecasting) with TS-OS models can be used to simulate long-term OS outcomes for an ongoing study, conditional on the available TS and OS data at interim data cuts of the same study. This tutorial provides a comprehensive overview of the steps involved in using such conditional simulations to support better informed drug development decisions in oncology. The tutorial covers the selection of the TS-OS framework model; applying the TS-OS model to the interim data; performing conditional simulations; generating relevant output; as well as correct interpretation and communication of the output for decision making.
肿瘤学监管批准的金标准是总生存期(OS)。由于OS数据最初有限,早期药物开发决策通常基于早期疗效终点,如客观缓解率和无进展生存期。肿瘤大小(TS)-OS模型提供了一个框架,通过利用随访有限的TS数据和与治疗无关的TS-OS链接函数,根据早期数据来预测潜在的后期成功,从而支持基于早期读数的决策。使用TS-OS模型进行条件模拟(也称为贝叶斯预测)可用于根据同一研究中期数据截点处可用的TS和OS数据,模拟正在进行的研究的长期OS结果。本教程全面概述了使用此类条件模拟以支持肿瘤学中更明智的药物开发决策所涉及的步骤。该教程涵盖了TS-OS框架模型的选择;将TS-OS模型应用于中期数据;进行条件模拟;生成相关输出;以及对输出进行正确解释和传达以用于决策。