Suppr超能文献

基于 AdaBN 和 AdaIN 的域自适应方法用于从临床 MRI 重建高分辨率 IVD 网格。

Domain adaptation using AdaBN and AdaIN for high-resolution IVD mesh reconstruction from clinical MRI.

机构信息

Galgo Medical S.L., Barcelona, Spain.

BCNMedTech, Universitat Pompeu Fabra, Barcelona, Spain.

出版信息

Int J Comput Assist Radiol Surg. 2024 Oct;19(10):2063-2068. doi: 10.1007/s11548-024-03233-9. Epub 2024 Jul 13.

Abstract

PURPOSE

Deep learning has firmly established its dominance in medical imaging applications. However, careful consideration must be exercised when transitioning a trained source model to adapt to an entirely distinct environment that deviates significantly from the training set. The majority of the efforts to mitigate this issue have predominantly focused on classification and segmentation tasks. In this work, we perform a domain adaptation of a trained source model to reconstruct high-resolution intervertebral disc meshes from low-resolution MRI.

METHODS

To address the outlined challenges, we use MRI2Mesh as the shape reconstruction network. It incorporates three major modules: image encoder, mesh deformation, and cross-level feature fusion. This feature fusion module is used to encapsulate local and global disc features. We evaluate two major domain adaptation techniques: adaptive batch normalization (AdaBN) and adaptive instance normalization (AdaIN) for the task of shape reconstruction.

RESULTS

Experiments conducted on distinct datasets, including data from different populations, machines, and test sites demonstrate the effectiveness of MRI2Mesh for domain adaptation. MRI2Mesh achieved up to a 14% decrease in Hausdorff distance (HD) and a 19% decrease in the point-to-surface (P2S) metric for both AdaBN and AdaIN experiments, indicating improved performance.

CONCLUSION

MRI2Mesh has demonstrated consistent superiority to the state-of-the-art Voxel2Mesh network across a diverse range of datasets, populations, and scanning protocols, highlighting its versatility. Additionally, AdaBN has emerged as a robust method compared to the AdaIN technique. Further experiments show that MRI2Mesh, when combined with AdaBN, holds immense promise for enhancing the precision of anatomical shape reconstruction in domain adaptation.

摘要

目的

深度学习在医学影像应用中已牢固确立其主导地位。然而,当将经过训练的源模型转换为适应完全不同的环境(与训练集有很大差异)时,必须谨慎考虑。大多数解决此问题的努力主要集中在分类和分割任务上。在这项工作中,我们对经过训练的源模型进行了域适应,以从低分辨率 MRI 重建高分辨率椎间盘网格。

方法

为了解决上述挑战,我们使用 MRI2Mesh 作为形状重建网络。它包含三个主要模块:图像编码器、网格变形和跨级特征融合。这个特征融合模块用于封装局部和全局椎间盘特征。我们评估了两种主要的域自适应技术:自适应批量归一化(AdaBN)和自适应实例归一化(AdaIN),用于形状重建任务。

结果

在包括来自不同人群、机器和测试站点的数据在内的不同数据集上进行的实验证明了 MRI2Mesh 对域适应的有效性。MRI2Mesh 在 AdaBN 和 AdaIN 实验中,Hausdorff 距离(HD)降低了 14%,点到面(P2S)度量降低了 19%,表明性能有所提高。

结论

MRI2Mesh 在各种数据集、人群和扫描协议中始终优于最先进的 Voxel2Mesh 网络,突显了其多功能性。此外,与 AdaIN 技术相比,AdaBN 是一种更强大的方法。进一步的实验表明,当与 AdaBN 结合使用时,MRI2Mesh 有望提高域自适应中解剖形状重建的精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验