Suppr超能文献

神经心理学和电生理学测量在痴呆诊断和预测中的应用:机器学习方法综述。

Neuropsychological and electrophysiological measurements for diagnosis and prediction of dementia: a review on Machine Learning approach.

机构信息

Department of Neuroscience & Neurorehabilitation, IRCCS San Raffaele, via della Pisana 235, Rome 00163, Italy; Department of Neuroscience, Catholic University of Sacred Heart, Largo Agostino Gemelli 8, Rome 00168, Italy.

Department of Neuroscience & Neurorehabilitation, IRCCS San Raffaele, via della Pisana 235, Rome 00163, Italy.

出版信息

Ageing Res Rev. 2024 Sep;100:102417. doi: 10.1016/j.arr.2024.102417. Epub 2024 Jul 14.

Abstract

INTRODUCTION

Emerging and advanced technologies in the field of Artificial Intelligence (AI) represent promising methods to predict and diagnose neurodegenerative diseases, such as dementia. By using multimodal approaches, Machine Learning (ML) seems to provide a better understanding of the pathological mechanisms underlying the onset of dementia. The purpose of this review was to discuss the current ML application in the field of neuropsychology and electrophysiology, exploring its results in both prediction and diagnosis for different forms of dementia, such as Alzheimer's disease (AD), Vascular Dementia (VaD), Dementia with Lewy bodies (DLB), and Frontotemporal Dementia (FTD).

METHODS

Main ML-based papers focusing on neuropsychological assessments and electroencephalogram (EEG) studies were analyzed for each type of dementia.

RESULTS

An accuracy ranging between 70 % and 90 % or even more was observed in all neurophysiological and electrophysiological results trained by ML. Among all forms of dementia, the most significant findings were observed for AD. Relevant results were mostly related to diagnosis rather than prediction, because of the lack of longitudinal studies with appropriate follow-up duration. However, it remains unclear which ML algorithm performs better in diagnosing or predicting dementia.

CONCLUSIONS

Neuropsychological and electrophysiological measurements, together with ML analysis, may be considered as reliable instruments for early detection of dementia.

摘要

简介

人工智能(AI)领域的新兴和先进技术代表了预测和诊断神经退行性疾病(如痴呆症)的有前途的方法。通过使用多模态方法,机器学习(ML)似乎可以更好地理解痴呆症发病的病理机制。本综述的目的是讨论神经心理学和脑电图(EEG)领域中当前的 ML 应用,探索其在不同类型痴呆症(如阿尔茨海默病(AD)、血管性痴呆(VaD)、路易体痴呆(DLB)和额颞叶痴呆(FTD))的预测和诊断中的结果。

方法

分析了每种类型的痴呆症中基于 ML 的主要神经心理学评估和脑电图研究论文。

结果

在所有由 ML 训练的神经生理学和脑电图结果中,观察到的准确性在 70%至 90%之间,甚至更高。在所有类型的痴呆症中,AD 的发现最为显著。相关结果主要与诊断相关,而与预测相关,因为缺乏具有适当随访时间的纵向研究。然而,目前尚不清楚哪种 ML 算法在诊断或预测痴呆症方面表现更好。

结论

神经心理学和脑电图测量,以及 ML 分析,可被视为早期发现痴呆症的可靠工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验