文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

应用于轻度认知障碍的机器学习:2015年至2024年的文献计量与可视化分析

Machine learning applied to mild cognitive impairment: bibliometric and visual analysis from 2015 to 2024.

作者信息

Liu Huan, Huo Qing, Li Feng, Luo Xu, Deng Renli

机构信息

Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China.

School of Nursing, Zunyi Medical University, Zunyi, China.

出版信息

Front Neurol. 2025 May 21;16:1587441. doi: 10.3389/fneur.2025.1587441. eCollection 2025.


DOI:10.3389/fneur.2025.1587441
PMID:40470497
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12133556/
Abstract

BACKGROUND: At present, the world is in the background of severe aging population challenges. Mild cognitive impairment (MCI), an intermediate state between normal aging and dementia, is a syndrome of cognitive impairment. Early recognition and intervention of MCI have great value for delaying the decline of cognitive function and improving the quality of life in the elderly. Machine learning (ML) is the core sub-branch direction in the field of artificial intelligence. In recent years, evaluating the potential application of machine learning in medicine has been popular, including the field of mild cognitive impairment. However, there is currently no bibliometrics to evaluate the scientific advances in this field. OBJECTIVE: This study aims to visually analyze the current research trends regarding the application of machine learning in the field of MCI through bibliometry and visualization techniques. METHODS: Using the Web of Science Core Collection database (Wo SCC), relevant articles and reviews of the collection database 2015-2024. Subsequently, the collected papers were subjected to bibliometric analysis utilizing CiteSpace, VOSviewer, and the "bibliometric" package in R language. RESULTS: A total of 2056 papers related to machine learning in patients with MCI were retrieved from the Wo SCC database. The number of papers is increasing year by year. These papers are mainly from 9,577 organizations in 498 countries, most of which are from the United States and China. The journal with the largest number of publications is the FRONTIERS IN AGING NEUROSCIENCE. Folstein M is an authoritative author from the Johns Hopkins University School of Medicine. His paper "Mini-mental state: A practical method for grading the cognitive state of patients for the clinician" is the most cited article in this field. Literature and keyword analysis indicate that MCI prediction, automated monitoring of MCI, continuous evaluation and remote monitoring of cognitive function in individuals with MCI, and interdisciplinary data integration and personalized medicine are current research hotspots and development directions. CONCLUSION: This study is the first to use bibliometric methods to visualize and analyze the application field of machine learning in MCI, revealing research trends and frontiers in this field. This information will provide a useful reference for researchers focusing on machine learning applications in the field of MCI.

摘要

背景:当前,世界正面临着严峻的人口老龄化挑战。轻度认知障碍(MCI)是正常衰老与痴呆之间的一种中间状态,是一种认知障碍综合征。MCI的早期识别和干预对于延缓老年人认知功能衰退、提高生活质量具有重要价值。机器学习(ML)是人工智能领域的核心分支方向。近年来,评估机器学习在医学领域的潜在应用受到广泛关注,包括轻度认知障碍领域。然而,目前尚无文献计量学方法来评估该领域的科学进展。 目的:本研究旨在通过文献计量学和可视化技术,直观地分析机器学习在MCI领域应用的当前研究趋势。 方法:使用Web of Science核心合集数据库(Wo SCC),检索2015 - 2024年该数据库中的相关文章和综述。随后,利用CiteSpace、VOSviewer以及R语言中的“bibliometric”包对收集到的论文进行文献计量分析。 结果:从Wo SCC数据库中检索到2056篇与MCI患者机器学习相关的论文。论文数量逐年增加。这些论文主要来自498个国家的9577个组织,其中大部分来自美国和中国。发表论文数量最多的期刊是《衰老神经科学前沿》(FRONTIERS IN AGING NEUROSCIENCE)。福尔斯坦·M是约翰霍普金斯大学医学院的权威作者。他的论文《简易精神状态检查:临床医生评估患者认知状态的实用方法》是该领域被引用最多的文章。文献和关键词分析表明,MCI预测、MCI的自动监测、MCI个体认知功能的持续评估和远程监测以及跨学科数据整合和个性化医疗是当前的研究热点和发展方向。 结论:本研究首次使用文献计量学方法对机器学习在MCI中的应用领域进行可视化分析,揭示了该领域的研究趋势和前沿。这些信息将为专注于机器学习在MCI领域应用的研究人员提供有用的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f403/12133556/588bda29e900/fneur-16-1587441-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f403/12133556/e4e7f151c72d/fneur-16-1587441-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f403/12133556/731e7491ad30/fneur-16-1587441-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f403/12133556/1afaaaa09c0a/fneur-16-1587441-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f403/12133556/20cf0dc63d6b/fneur-16-1587441-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f403/12133556/5380f87eb30e/fneur-16-1587441-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f403/12133556/ef9fe51967ba/fneur-16-1587441-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f403/12133556/588bda29e900/fneur-16-1587441-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f403/12133556/e4e7f151c72d/fneur-16-1587441-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f403/12133556/731e7491ad30/fneur-16-1587441-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f403/12133556/1afaaaa09c0a/fneur-16-1587441-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f403/12133556/20cf0dc63d6b/fneur-16-1587441-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f403/12133556/5380f87eb30e/fneur-16-1587441-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f403/12133556/ef9fe51967ba/fneur-16-1587441-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f403/12133556/588bda29e900/fneur-16-1587441-g007.jpg

相似文献

[1]
Machine learning applied to mild cognitive impairment: bibliometric and visual analysis from 2015 to 2024.

Front Neurol. 2025-5-21

[2]
Machine learning applied to epilepsy: bibliometric and visual analysis from 2004 to 2023.

Front Neurol. 2024-4-2

[3]
Research hotspots and frontiers of machine learning in renal medicine: a bibliometric and visual analysis from 2013 to 2024.

Int Urol Nephrol. 2025-3

[4]
A bibliometric analysis on the health behaviors related to mild cognitive impairment.

Front Aging Neurosci. 2024-5-3

[5]
The Current Research Landscape on the Machine Learning Application in Autism Spectrum Disorder: A Bibliometric Analysis From 1999 to 2023.

Curr Neuropharmacol. 2025-3-25

[6]
Knowledge structure and future research trends of body-mind exercise for mild cognitive impairment: a bibliometric analysis.

Front Neurol. 2024-1-23

[7]
Effect of dietary patterns on mild cognitive impairment and dementia: a machine learning bibliometric and visualization analysis.

Front Nutr. 2024-5-13

[8]
Research Progress and Trends in Exercise Interventions for Mild Cognitive Impairment: A Bibliometric Visualization Analysis Using CiteSpace.

J Multidiscip Healthc. 2025-1-31

[9]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[10]
Frontiers and hotspots evolution in mild cognitive impairment: a bibliometric analysis of from 2013 to 2023.

Front Neurosci. 2024-8-16

本文引用的文献

[1]
Dementia and MCI Detection Based on Comprehensive Facial Expression Analysis From Videos During Conversation.

IEEE J Biomed Health Inform. 2025-5

[2]
A multimodal cross-transformer-based model to predict mild cognitive impairment using speech, language and vision.

Comput Biol Med. 2024-11

[3]
Dual attention based fusion network for MCI Conversion Prediction.

Comput Biol Med. 2024-11

[4]
Understanding machine learning applications in dementia research and clinical practice: a review for biomedical scientists and clinicians.

Alzheimers Res Ther. 2024-8-1

[5]
Neuropsychological and electrophysiological measurements for diagnosis and prediction of dementia: a review on Machine Learning approach.

Ageing Res Rev. 2024-9

[6]
Mild cognitive impairment detection from facial video interviews by applying spatial-to-temporal attention module.

Expert Syst Appl. 2024-10-15

[7]
An overview of Frontiers in Research Metrics and Analytics.

Front Res Metr Anal. 2024-5-16

[8]
Overlooked cases of mild cognitive impairment: Implications to early Alzheimer's disease.

Ageing Res Rev. 2024-7

[9]
Bibliometric analysis: A few suggestions.

Curr Probl Cardiol. 2024-8

[10]
Physical activity, sedentary behaviour, and cognitive function among older adults: A bibliometric analysis from 2004 to 2024.

Ageing Res Rev. 2024-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索