Suppr超能文献

三种氧化液态有机氢载体(oxo-LOHC)系统的水生毒性、生物累积潜力和人类雌激素/雄激素活性。

Aquatic toxicity, bioaccumulation potential, and human estrogen/androgen activity of three oxo-Liquid Organic Hydrogen Carrier (oxo-LOHC) systems.

机构信息

Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany.

Institute of Hydrobiology, Dresden University of Technology, 01069 Dresden, Germany.

出版信息

J Hazard Mater. 2024 Sep 5;476:135102. doi: 10.1016/j.jhazmat.2024.135102. Epub 2024 Jul 4.

Abstract

The Liquid Organic Hydrogen Carrier (LOHC) technology offers a technically attractive way for hydrogen storage. If LOHC systems were to fully replace liquid fossil fuels, they would need to be handled at the multi-million tonne scale. To date, LOHC systems on the market based on toluene or benzyltoluene still offer potential for improvements. Thus, it is of great interest to investigate potential LOHCs that promise better performance and environmental/human hazard profiles. In this context, we investigated the acute aquatic toxicity of oxygen-containing LOHC (oxo-LOHC) systems. Toxic Ratio (TR) values of oxo-LOHC compounds classify them baseline toxicants (0.1 < TR < 10). Additionally, the mixture toxicity test conducted with D. magna suggests that the overall toxicity of a benzophenone-based system can be accurately predicted using a concentration addition model. The estimation of bioconcentration factors (BCF) through the use of the membrane-water partition coefficient indicates that oxo-LOHCs are unlikely to be bioaccumulative (BCF < 2000). None of the oxo-LOHC compounds exhibited hormonal disrupting activities at the tested concentration of 2 mg/L in yeast-based reporter gene assays. Therefore, the oxo-LOHC systems seem to pose a low level of hazard and deserve more attention in ongoing studies searching for the best hydrogen storage technologies.

摘要

液体有机氢载体 (LOHC) 技术为储氢提供了一种极具吸引力的技术途径。如果 LOHC 系统要完全替代液态化石燃料,它们将需要以百万吨级的规模进行处理。迄今为止,市场上基于甲苯或苄基甲苯的 LOHC 系统仍有改进的潜力。因此,研究具有更好性能和环境/人体危害特征的潜在 LOHC 具有重要意义。在这种情况下,我们研究了含氧 LOHC(氧化 LOHC)系统的急性水生毒性。氧化 LOHC 化合物的毒性比值 (TR) 值将其归类为基线毒物 (0.1 < TR < 10)。此外,用 D. magna 进行的混合物毒性测试表明,使用浓度加和模型可以准确预测基于二苯甲酮的系统的整体毒性。通过使用膜-水分配系数来估计生物浓缩系数 (BCF) 表明,氧化 LOHC 不太可能具有生物累积性 (BCF < 2000)。在酵母报告基因测定中,测试浓度为 2mg/L 时,没有一种氧化 LOHC 化合物表现出激素干扰活性。因此,氧化 LOHC 系统似乎危害程度较低,在正在进行的寻找最佳氢气储存技术的研究中值得进一步关注。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验