Suppr超能文献

用于氢化和脱氢反应的液态有机氢载体概念及催化剂。

Liquid Organic Hydrogen Carrier Concepts and Catalysts for Hydrogenation and Dehydrogenation Reactions.

作者信息

Cabrera Gerardo, Mora Malka, Gil-Burgos Juan P, Visbal Renso, Machuca-Martínez Fiderman, Mosquera-Vargas Edgar

机构信息

Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia.

Grupo de Investigación en Síntesis Organometálica y Catálisis (GISIOMCA), Departamento de Química, Universidad del Valle, Santiago de Cali 760032, Colombia.

出版信息

Molecules. 2024 Oct 18;29(20):4938. doi: 10.3390/molecules29204938.

Abstract

BACKGROUND

The issue of renewable energy (RE) source intermittency, such as wind and solar, along with the geographically uneven distribution of the global RE potential, makes it imperative to establish an energy transport medium to balance the energy demand and supply areas. A promising energy vector to address this situation is hydrogen, which is considered a clean energy carrier for various mobile and portable applications. Unfortunately, at standard pressure and temperature, its energy content per volume is very low (0.01 kJ/L). This necessitates alternative storage technologies to achieve reasonable capacities and enable economically viable long-distance transportation. Among the hydrogen storage technologies using chemical methods, liquid organic hydrogen carrier (LOHC) systems are considered a promising solution. They can be easily managed under ambient conditions, the H storage/release processes are carbon-free, and the carrier liquid is reusable. However, the evolution of the proposals from the carrier liquid type and catalyst elemental composition point of view is scarcely studied, considering that both are critical in the performance of the system (operational parameters, kinetic of the reactions, gravimetric hydrogen content, and others) and impact in the final cost of the technology deployed. The latter is due to the use of the Pt group elements (PGEs) in the catalyst that, for example, have a high demand in the hydrogen production sector, particularly for polymer electrolyte membrane (PEM) water electrolysis. With that in mind, our objective was to examine the evolution and the focus of the research in recent years related to proposals of LOHCs and catalysts for hydrogenation and dehydrogenation reactions in LOHC systems which can be useful in defining routes/strategies for new participants interested in becoming involved in the development of this technology.

DATA SOURCES

For this systematic review, we searched the SCOPUS database and forward and backward citations for studies published in the database between January 2011 and December 2022.

ELIGIBILITY CRITERIA

The criteria include articles which assessed or studied the effect of the type of catalyst, type of organic liquid, reactor design(s)/configuration(s), and modification of the reactor operational parameters, among others, over the performance of the LOHC system (de/hydrogenation reaction(s)).

DATA EXTRACTION AND ANALYSIS

The relevant data from each reviewed study were collected and organized into a pre-designed table on an Excel spreadsheet, categorized by reference, year, carrier organic liquid, reaction (hydrogenation and/or dehydrogenation), investigated catalyst, and primary catalyst element. For processing the data obtained from the selected scientific publications, the data analysis software Orbit Intellixir was employed.

RESULTS

For the study, 233 studies were included. For the liquid carrier side, benzyltoluene and carbazole dominate the research strategies. Meanwhile, platinum (Pt) and palladium (Pd) are the most employed catalysts for dehydrogenation reactions, while ruthenium (Ru) is preferred for hydrogenation reactions.

CONCLUSIONS

From the investigated liquid carrier, those based on benzyltoluene and carbazole together account for over 50% of the total scientific publications. Proposals based on indole, biphenyl, cyclohexane, and cyclohexyl could be considered to be emerging within the time considered in this review, and, therefore, should be monitored for their evolution. A great activity was detected in the development of catalysts oriented toward the dehydrogenation reaction, because this reaction requires high temperatures and presents slow H release kinetics, conditioning the success of the implementation of the technology. Finally, from the perspective of the catalyst composition (monometallic and/or bimetallic), it was identified that, for the dehydrogenation reaction, the most used elements are platinum (Pt) and palladium (Pd), while, for the hydrogenation reaction, ruthenium (Ru) widely leads its use in the different catalyst designs. Therefore, the near-term initiatives driving progress in this field are expected to focus on the development of new or improved catalysts for the dehydrogenation reaction of organic liquids based on benzyltoluene and carbazole.

摘要

背景

风能和太阳能等可再生能源(RE)存在间歇性问题,且全球可再生能源潜力在地理分布上不均衡,因此必须建立一种能量传输介质来平衡能源供需地区。一种有望解决这一情况的能量载体是氢,它被视为适用于各种移动和便携式应用的清洁能源载体。不幸的是,在标准压力和温度下,其单位体积的能量含量非常低(0.01 kJ/L)。这就需要采用替代存储技术来实现合理的容量,并实现经济上可行的长距离运输。在使用化学方法的储氢技术中,液态有机氢载体(LOHC)系统被认为是一种有前景的解决方案。它们在环境条件下易于管理,储氢/释氢过程无碳排放,且载体液体可重复使用。然而,从载体液体类型和催化剂元素组成的角度来看,相关提议的演变情况鲜有研究,因为这两者对系统性能(操作参数、反应动力学、重量氢含量等)都至关重要,并会影响所部署技术的最终成本。后者是由于在催化剂中使用了铂族元素(PGEs),例如,这些元素在制氢领域有很高的需求,特别是在聚合物电解质膜(PEM)水电解中。考虑到这一点,我们的目标是研究近年来与LOHCs提议以及LOHC系统中氢化和脱氢反应催化剂相关的研究演变和重点,这对于为有兴趣参与该技术开发的新参与者确定路线/策略可能会有所帮助。

数据来源

对于本系统评价,我们检索了SCOPUS数据库以及该数据库在2011年1月至2022年12月期间发表的研究的前后引用文献。

纳入标准

标准包括评估或研究催化剂类型、有机液体类型、反应器设计/配置以及反应器操作参数的修改等对LOHC系统性能(脱氢/氢化反应)影响的文章。

数据提取与分析

从每项纳入评价的研究中收集相关数据,并整理到Excel电子表格中预先设计的表格中,按参考文献、年份、载体有机液体、反应(氢化和/或脱氢)、研究的催化剂以及主要催化剂元素进行分类。为处理从选定科学出版物中获得的数据,使用了数据分析软件Orbit Intellixir。

结果

本研究共纳入233项研究。在液体载体方面,苄基甲苯和咔唑主导了研究策略。同时,铂(Pt)和钯(Pd)是脱氢反应中使用最多的催化剂,而钌(Ru)在氢化反应中更受青睐。

结论

在所研究的液体载体中,基于苄基甲苯和咔唑的载体占科学出版物总数的50%以上。基于吲哚、联苯、环己烷和环己基的提议在本综述所考虑的时间范围内可被视为新兴提议,因此应监测其发展情况。在面向脱氢反应的催化剂开发方面发现了大量活动,因为该反应需要高温且氢释放动力学缓慢,这制约了该技术实施的成功。最后,从催化剂组成(单金属和/或双金属)的角度来看,已确定对于脱氢反应,最常用的元素是铂(Pt)和钯(Pd),而对于氢化反应,钌(Ru)在不同催化剂设计中广泛占据主导地位。因此,可以预期该领域推动进展的近期举措将集中在开发基于苄基甲苯和咔唑的有机液体脱氢反应的新型或改进催化剂上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/decd/11510432/c6ed1ba666da/molecules-29-04938-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验