Queen's University School of Medicine, 15 Arch St, Kingston, ON K7L 3L4, Canada.
Queen's University School of Medicine, 15 Arch St, Kingston, ON K7L 3L4, Canada; Department of Diagnostic Radiology, Kingston Health Sciences Centre, Kingston, ON, Canada.
Curr Probl Diagn Radiol. 2024 Nov-Dec;53(6):728-737. doi: 10.1067/j.cpradiol.2024.07.007. Epub 2024 Jul 9.
INTRODUCTION: The rise of transformer-based large language models (LLMs), such as ChatGPT, has captured global attention with recent advancements in artificial intelligence (AI). ChatGPT demonstrates growing potential in structured radiology reporting-a field where AI has traditionally focused on image analysis. METHODS: A comprehensive search of MEDLINE and Embase was conducted from inception through May 2024, and primary studies discussing ChatGPT's role in structured radiology reporting were selected based on their content. RESULTS: Of the 268 articles screened, eight were ultimately included in this review. These articles explored various applications of ChatGPT, such as generating structured reports from unstructured reports, extracting data from free text, generating impressions from radiology findings and creating structured reports from imaging data. All studies demonstrated optimism regarding ChatGPT's potential to aid radiologists, though common critiques included data privacy concerns, reliability, medical errors, and lack of medical-specific training. CONCLUSION: ChatGPT and assistive AI have significant potential to transform radiology reporting, enhancing accuracy and standardization while optimizing healthcare resources. Future developments may involve integrating dynamic few-shot prompting, ChatGPT, and Retrieval Augmented Generation (RAG) into diagnostic workflows. Continued research, development, and ethical oversight are crucial to fully realize AI's potential in radiology.
简介:基于变压器的大型语言模型(LLM),如 ChatGPT,在人工智能(AI)的最新进展中引起了全球关注。ChatGPT 在结构化放射学报告中显示出越来越大的潜力——AI 传统上专注于图像分析的领域。
方法:全面搜索 MEDLINE 和 Embase 从成立到 2024 年 5 月,根据内容选择了讨论 ChatGPT 在结构化放射学报告中作用的主要研究。
结果:在筛选的 268 篇文章中,最终有 8 篇被纳入本综述。这些文章探讨了 ChatGPT 的各种应用,例如从非结构化报告生成结构化报告、从自由文本中提取数据、从放射学发现生成印象以及从成像数据生成结构化报告。所有研究都对 ChatGPT 辅助放射科医生的潜力表示乐观,尽管常见的批评包括数据隐私问题、可靠性、医疗错误和缺乏医学特定培训。
结论:ChatGPT 和辅助 AI 具有显著潜力,可以改变放射学报告,提高准确性和标准化水平,同时优化医疗资源。未来的发展可能涉及将动态少样本提示、ChatGPT 和检索增强生成(RAG)集成到诊断工作流程中。持续的研究、开发和伦理监督对于充分实现 AI 在放射学中的潜力至关重要。
Curr Probl Diagn Radiol. 2024
J Med Imaging Radiat Oncol. 2024-4
Isr Med Assoc J. 2024-2
Diagn Interv Imaging. 2024
Therap Adv Gastroenterol. 2023-12-25
Cancers (Basel). 2025-4-30
J Periodontal Implant Sci. 2024-8